Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok...Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect...Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.展开更多
Background:Gram-positive bacteria stimulate Toll-like receptor(TLR)2 and then activate the pro-inflammatory nuclear factor-kappa B(NF-κB)pathway.As the human ocular surface is heavily colonised by gram-positive cocci...Background:Gram-positive bacteria stimulate Toll-like receptor(TLR)2 and then activate the pro-inflammatory nuclear factor-kappa B(NF-κB)pathway.As the human ocular surface is heavily colonised by gram-positive cocci bacteria,a balance of activation/repression of NF-κB target genes is essential to avoid uncontrolled infection or autoimmune-related inflammation.It is advantageous to test NF-κB targeting molecules in an ocular surface culture system that allows assessment of temporal NF-κB activation in a longitudinal fashion without destruction of cells.Such initial testing under standardised conditions should reduce the number of molecules that progress to further evaluation in animal models.This study aims to establish an in-vitro cell culture system to assess NF-κB activation in the context of ocular surface cells.Methods:NF-κB activity was evaluated through a secretory alkaline phosphatase reporter assay(SEAP).Immunoblots and immunofluorescence were used to examine IκBαphosphorylation and p65/p50 nuclear localization.Monocyte chemoattractant protein-1(MCP-1)transcripts were evaluated by real time PCR and protein levels were measured by ELISA.Results:NF-κB activity in HCE-T cells treated with TLR2 activator Pam3CSK4 was higher than control cells at both 6 and 24 h.Pam3CSK4-stimulated NF-κB activation was inhibited by IκK inhibitors,Wedelolactone and BMS-345541.In Pam3CSK4 treated cells,active NF-κB subunits p50 and p65 increased in cell nuclear fractions as early as 1.5 h.Although the level of total IκB-αremained constant,phospho-IκB-αincreased with treatment over time.In the culture media of Pam3CSK4-stimulated cells,MCP-1 protein level was increased,which was suppressed in the presence of IκK inhibitors.Conclusion:NF-κB pathway can be activated by the TLR2 ligand and inhibited by IκK inhibitors in the ocular surface cell culture system.This cell culture system may be used to evaluate TLR-related innate defences in ocular surface diseases.展开更多
Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu conce...Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.展开更多
This study aimed to evaluate the effects of Bifi dobacterium breve CCFM683 on psoriasis and to investigate the underlying mechanisms.B.breve CCFM683 significantly ameliorated psoriasis in mice as well as elevated the ...This study aimed to evaluate the effects of Bifi dobacterium breve CCFM683 on psoriasis and to investigate the underlying mechanisms.B.breve CCFM683 significantly ameliorated psoriasis in mice as well as elevated the deoxycholic acid(DCA)and lithocholic acid(LCA)in the colon compared with those of the imiquimod(IMQ)-treated mice.Meanwhile,B.breve CCFM683 increased the relative abundance of DCA-producing Lachnoclostridium and diminished the harmful Desulfovibrio and Prevotellaceae UCG001.Additionally,the farnesoid X receptor(FXR)in the skin was activated and the expression of the Toll-like receptor 4(TLR4)/nuclear factor kappa-B(NF-κB)pathway was inhibited,and the downstream interleukin(IL)-17 and tumor necrosis factor(TNF)-αwere downregulated whereas IL-10 was up-regulated.Moreover,the subsequent hyperproliferation of keratinocytes and the dysfunction of the epidermal barrier were improved.In conclusion,CCFM683 administration ameliorated IMQ-induced psoriasis via modulating gut microbiota,promoting the DCA production,regulating the FXR-TLR4/NF-κB pathway,diminishing proinflammatory cytokines,and regulating keratinocytes and epidermal barrier.These findings may be conducive to elucidating the mechanism for probiotics to ameliorate psoriasis and to promote its clinical trials in skin disease.展开更多
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor...Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.展开更多
Objective Porphyromonas gingivalis(P.gingivalis)is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases,includin...Objective Porphyromonas gingivalis(P.gingivalis)is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases,including chronic kidney disease(CKD),but the roles and molecular mechanism of P.gingivalis in CKD pathogenesis are unclear.Methods In this study,an animal model of oral P.gingivalis administration and glomerular mesangial cells(GMCs)cocultured with M1-polarized macrophages and P.gingivalis supernatant were constructed.After seven weeks of P.gingivalis gavaged,peripheral blood was collected to detect the changes in renal function.By collecting the teeth and kidneys of mice,H&E staining and IHC were used to analyze the expression of periodontal inflammatory factors in mice,PAS staining was used to analyze glomerular lesions.The supernatant of macrophages was treated with 5%P.gingivalis supernatant.H&E staining,IHC,Western blot and RT-PCR were applied to analyze renal inflammatory factors,macrophage M1 polarization,NF-κB,NLRP3 and ferroptosis changes in vitro.Results We found that oral P.gingivalis administration induced CKD in mice.P.gingivalis supernatant induced macrophage polarization and inflammatory factor upregulation,which triggered the activation of the NF-κB/NLRP3 pathway and ferroptosis in GMCs.By inhibiting the NF-κB/NLRP3 pathway and ferroptosis in GMCs,cell viability and the inflammatory response were partially alleviated in vitro.Conclusion We demonstrated that P.gingivalis induced CKD in mice by triggering crosstalk between the NFκB/NLRP3 pathway and ferroptosis in GMCs.Overall,our study suggested that periodontitis can promote the pathogenesis of CKD in mice,which provides evidence of the importance of periodontitis therapy in the prevention and treatment of CKD.展开更多
Branched-chain fatty acids(BCFAs)are new bioactive fatty acids with anti-inflammatory properties.However,the role of BCFAs in alleviating ulcerative colitis has not been clarified.Herein,we evaluated the protective ef...Branched-chain fatty acids(BCFAs)are new bioactive fatty acids with anti-inflammatory properties.However,the role of BCFAs in alleviating ulcerative colitis has not been clarified.Herein,we evaluated the protective effect of BCFAs from goat milk in mice with colitis induced using dextran sodium sulfate(DSS)and explored the corresponding mechanism.These results show that BCFAs extracted from goat milk can significantly alleviate weight loss in mice,and reduce the disease activity index and the activity of myeloperoxidase while increasing the content of antioxidant enzymes in colon tissue and reducing the oxidation stress response.These data also show that BCFAs can down-regulate the gene and protein expression of the toll-like receptor 4(TLR4)/nuclear factorκB p65(NF-κB p65)/NOD-like receptor thermal protein domain associated protein 3(NLRP3)signaling pathway,and at the same time significantly reduce the expression of pro-inflammatory factors tumor necrosis factorα(TNF-α),interleukin 1β(IL-1β),and IL-18 in colon tissue,and significantly increase the expression of the anti-inflammatory factor IL-10.In conclusion,these results demonstrated that BCFAs in goat milk exerted effects on colitis-related inflammatory cytokines and inhibited inflammation by inducing the TLR4/NF-κB/NLRP3 pathway to alleviate DSS-induced ulcerative colitis.This study provides evidence for the potential of BCFAs as bioactive fatty acids in food products and to ameliorate ulcerative colitis development in mice.展开更多
BACKGROUND Ulcer colitis(UC)is a chronic,nonspecific,and noninfectious inflammatory bowel disease.Recently,Toll-like receptors(TLRs)have been found to be closely associated with clinical inflammatory diseases.Achievin...BACKGROUND Ulcer colitis(UC)is a chronic,nonspecific,and noninfectious inflammatory bowel disease.Recently,Toll-like receptors(TLRs)have been found to be closely associated with clinical inflammatory diseases.Achieving complete remission in patients with intermittent periods of activity followed by dormancy is challenging.Moreover,no study has explored the mechanism by which Kuicolong-yu enema decoction retains traditional Chinese medicine enemas to attenuate the inflammatory response in UC.AIM To explore the mechanism by which Kuicolong-yu enema decoction retains traditional Chinese medicine enemas to attenuate the inflammatory response in UC.METHODS This prospective clinical study included patients who met the exclusion criteria in 2020 and 2021.The patients with UC were divided into two groups(control and experimental).The peripheral blood of the experimental and control groups were collected under aseptic conditions.The expression of TLR4 protein,NF-κB,IL-6,and IL-17 was detected in the peripheral blood of patients in the experimental group and control group before and 1 month after taking the drug.Linear co rrelation analysis was used to analyze the relationship between the expression level of TLR4 protein and the expression levels of downstream signal NF-κB and inflammatory factors IL-6 and IL-17,and P<0.05 was considered statistically significant.RESULTS There were no significant differences in the patient characteristics between the control and experimental groups.The results showed that the expression levels of TLR4 and NF-κB in the experimental group were significantly lower than those in the control group(P<0.05).The levels of IL-6 and IL-17 in the experimental group were significantly lower than those in the control group(P<0.05).The TLR4 protein expression in the experimental group was positively correlated with the expression level of downstream signal NF-κB and was positively correlated with the levels of downstream inflammatory cytokines IL-6 and IL-17(r=0.823,P<0.05).CONCLUSION Kuicolong-yu enema decoction retains traditional Chinese medicine enema attenuates the inflammatory response of UC through the TLR4/NF-κB signaling pathway.展开更多
Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-tran...Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-translocation-associated (ZFTA, ST-EPN-ZFTA), exhibits the expression of a fusion protein comprising ZFTA and v-rel reticuloendotheliosis viral oncogene homolog A (RELA), an effector transcription factor of the nuclear factor-kappa B (NF-κB) pathway (ZFTA-RELA). The expression of ZFTA-RELA results in the hyperactivation of the oncogenic NF-κB signaling pathway, which ultimately leads to the development of ST-EPN-ZFTA. To identify inhibitors of the NF-κB signaling pathway activated by the expression of ZFTA-RELA, we used a doxycycline-inducible ZFTA-RELA-expressing NF-κB reporter cell line and found that extracts of the fungus Neosartorya spinosa IFM 47025 exhibited NF-κB inhibitory activity. We identified eight compounds [aszonapyrone A (2), sartorypyrone A (3), epiheveadride (4), acetylaszonalenin (5), (R)-benzodiazepinedione (6), aszonalenin (7), sartorypyrone E (8) and (Z, Z)-N,N’-(1,2-bis[(4-methoxyphenyl)methylene]-1,2-ethanediyl)bis-formamide (9)] from N. spinosa IFM 47025 culture extract using a variety of chromatographic techniques. The structures of these compounds were identified through the analysis of various instrumental data (1D, 2D-NMR, MS, and optical rotation). The NF-κB responsive reporter assay indicated that compounds 2, 3, 5, 7, and 9 exhibited inhibitory activity. We further evaluated the inhibitory activity of these compounds against the expression of endogenous NF-κB responsive genes (CCND1, L1CAM, ICAM1, and TNF) and found that compound 2 showed significant inhibitory activity. Further studies are required to elucidate the mechanism of action of compound 2, which may serve as a lead compound for the development of a novel therapy for ST-EPN-ZFTA.展开更多
BACKGROUND Parthenolide(PTL),a sesquiterpene lactone derived from the medicinal herb Chrysanthemum parthenium,exhibits various biological effects by targeting NF-kB,STAT3,and other pathways.It has emerged as a promisi...BACKGROUND Parthenolide(PTL),a sesquiterpene lactone derived from the medicinal herb Chrysanthemum parthenium,exhibits various biological effects by targeting NF-kB,STAT3,and other pathways.It has emerged as a promising adjunct therapy for multiple malignancies.AIM To evaluate the in vitro and in vivo effect of PTL on cyclophosphamide(CTX)metronomic chemotherapy.METHODS The cytotoxicity of PTL and CTX on Lewis lung cancer cells(LLC cells)was assessed by measuring cell activity and apoptosis.The anti-tumor efficiency was evaluated using a tumor xenograft mice model,and the survival of mice and tumor volume were monitored.Additionally,the collected tumor tissues were analyzed for tumor microenvironment indicators and inflammatory factors.RESULTS In vitro,PTL demonstrated a synergistic effect with CTX in inhibiting the growth of LLC cells and promoting apoptosis.In vivo,metronomic chemotherapy com-bined with PTL and CTX improved the survival rate of tumor-bearing mice and reduced tumor growth rate.Furthermore,metronomic chemotherapy combined with PTL and CTX reduced NF-κB activation and improved the tumor immune microenvironment by decreasing tumor angiogenesis,reducing Transforming growth factorβ,andα-SMA positive cells.CONCLUSION PTL is an efficient compound that enhances the metronomic chemotherapy effects of CTX both in vitro and in vivo,suggesting its potential as a supplementary therapeutic strategy in metronomic chemotherapy to improve the chemotherapy effects.展开更多
Objective:To investigate the effects of ivabradine on Notch and NF-kappa B signaling pathway in myocardial cells of rats with myocardial infarction.Methods: The model of myocardial infarction was established by ligati...Objective:To investigate the effects of ivabradine on Notch and NF-kappa B signaling pathway in myocardial cells of rats with myocardial infarction.Methods: The model of myocardial infarction was established by ligating the left anterior descending coronary artery. The surviving rats were randomly divided into model group (MI group,n=8) and treatment group (IVA group,n=8). Rats with the same location but without ligation of the left anterior descending coronary artery were used as control group (CON group,n = 8). IVA was administered for 28 d. Hemodynamic and cardiac function indexes of all rats were measured: heart rate (HR), systolic pressure (SBP), diastolic pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and maximum rate of increase and decrease of left ventricular internal pressure (+dp/dt);left ventricular mass index, left ventricular cross-sectional diameter and infarct area;The expression of Notch signaling pathway components mRNA (Notch-1, Dll-4, Hes-1) in rat cardiomyocytes was detected by PT-PCR, and the expression of DICD-1 and P65 protein was detected by western-blot. One-way ANOVA was used for comparison between groups, and SNK was used for comparison between groups.Results: SBP, DBP, MAP, LASP, LVEDP and (+dp/dt) in MI group were lower than those in control group (P<0.05), while IVA was higher than those in MI group (P<0.05). Left ventricular mass index and left ventricular sectional diameter in MI group were significantly higher than those in control group (P<0.05), but lower than those in IVA group (P<0.05). The expression of Notch-1 in MI group was significantly higher than that in control group (P<0.05), but lower than that in IVA group (P<0.05). There was no significant difference in the expression of Dll-4 and Hes-1 mRNA between the three groups (P>0.05). The expression levels of NICD-1 and P 65 in MI group were significantly higher than those in CON group (P<0.05), but lower than those in IVA group (P<0.05). Conclusion: IVA may improve cardiac function and inhibit ventricular remodeling in rats with myocardial infarction through Notch and NF-kappa B signaling pathways.展开更多
Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:...Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:One hundred patients with severe head injury who were admitted to our hospital from September 2016 to May 2019 were enrolled. The randomized digital table method was divided into 50 cases in the study group and the control group. Patients in the study group were given dexmedetomidine at a dose of 1.0 μg/kg before anesthesia induction, followed by infusion at 0.4 μg / (kg·h), and the control group was injected with the same amount of normal saline. The incidence of PSH, clinical symptoms, imaging findings, mechanical ventilation time, tracheal intubation/incision duration, ICU hospitalization time, total length of hospital stay, and GCS scores three months after discharge were compared between the two groups. At the same time, the fluorescence intensity, TLR4, NF-κB expression level and tumor necrosis factor-α (TNF-α) expression levels in peripheral blood CD14+ monocytes of the two groups were detected. Results:The incidence of PSH was significantly lower in the study group than in the control group at 7 and 3 months (P<0.05). The total length of hospital stay, duration of ICU hospitalization, intraoperative tracheotomy, and mechanical ventilation time were significantly lower in the study group than in the control group. And the GCS score was higher than the control group, and the difference was statistically significant (P<0.05). In addition, the imaging results showed that there were some differences in the location of imaging lesions between the two groups. The proportion of lesions in the ventricular system and surrounding areas was higher in the control group than in the study group (P<0.05). And the T14-T3 CD14+ PBMC MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate were significantly higher than those of T0 (P<0.05), but the MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate in the study group were significantly lower than those in the control group at T1~T3 (P<0.05). The levels of serum TNF-α in T1~T3 groups were significantly higher than those in T0 (P<0.05), but the levels of serum TNF-α in T1~T3 in the study group were significantly lower than those in the control group (P< 0.05). Conclusions:Dexmedetomidine can reduce the oxidative stress response in patients with severe head injury by inhibiting TLR4/My D88/NF-κB signaling pathway, thus effectively reducing the risk of PSH and improving the prognosis of patients.展开更多
[目的]探讨核转录因子(NF-kappa B p65)和血管内皮生成因子(VEGF)在晚期原发性肝癌(HCC)组织和正常肝脏组织中的表达及其意义。[方法]采用免疫组织化学染色SP法检测65例晚期HCC组织切片(其中36例直径≥5cm,16例5cm>直径>2cm,13例...[目的]探讨核转录因子(NF-kappa B p65)和血管内皮生成因子(VEGF)在晚期原发性肝癌(HCC)组织和正常肝脏组织中的表达及其意义。[方法]采用免疫组织化学染色SP法检测65例晚期HCC组织切片(其中36例直径≥5cm,16例5cm>直径>2cm,13例直径≤2cm;28例肝内病灶数目大于1个,37例肝内病灶数目为1个)和30例正常肝脏组织(对照组)中NF-kappa B p65和VEGF抗体的表达水平,采用秩和检验方法分析其差异性,并再以直线相关方法分析NF-kappa B p65和VEGF在HCC中表达的相关性。[结果]各肿瘤组随肿瘤直径的增大,NF-kappa B p65和VEGF表达水平均出现递增的趋势。肝内(肿瘤数目>1个)NF-kappa B p65和VEGF表达水平强于肝内无转移组(P<0.05)。NF-kappa B p65和VEGF在HCC中表达呈正相关。[结论]VEGF有促进肝癌生长和侵袭转移作用,而NF-kappaBp65在HCC生长中有促进VEGF表达上调的作用。展开更多
基金supported by the National Natural Science Foundation of China,No.81771250(to XC)the Natural Science Foundation of Fujian Province,Nos.2020J011059(to XC),2020R1011004(to YW),2021J01374(to XZ)+1 种基金Medical Innovation Project of Fujian Province,No.2021 CXB002(to XC)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(to XC)。
文摘Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
文摘Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.
基金supported by the Singapore National Research Foundation(NMRC/CSA/045/2012)administered by the Singapore Ministry of Health’s National Medical Research Council.
文摘Background:Gram-positive bacteria stimulate Toll-like receptor(TLR)2 and then activate the pro-inflammatory nuclear factor-kappa B(NF-κB)pathway.As the human ocular surface is heavily colonised by gram-positive cocci bacteria,a balance of activation/repression of NF-κB target genes is essential to avoid uncontrolled infection or autoimmune-related inflammation.It is advantageous to test NF-κB targeting molecules in an ocular surface culture system that allows assessment of temporal NF-κB activation in a longitudinal fashion without destruction of cells.Such initial testing under standardised conditions should reduce the number of molecules that progress to further evaluation in animal models.This study aims to establish an in-vitro cell culture system to assess NF-κB activation in the context of ocular surface cells.Methods:NF-κB activity was evaluated through a secretory alkaline phosphatase reporter assay(SEAP).Immunoblots and immunofluorescence were used to examine IκBαphosphorylation and p65/p50 nuclear localization.Monocyte chemoattractant protein-1(MCP-1)transcripts were evaluated by real time PCR and protein levels were measured by ELISA.Results:NF-κB activity in HCE-T cells treated with TLR2 activator Pam3CSK4 was higher than control cells at both 6 and 24 h.Pam3CSK4-stimulated NF-κB activation was inhibited by IκK inhibitors,Wedelolactone and BMS-345541.In Pam3CSK4 treated cells,active NF-κB subunits p50 and p65 increased in cell nuclear fractions as early as 1.5 h.Although the level of total IκB-αremained constant,phospho-IκB-αincreased with treatment over time.In the culture media of Pam3CSK4-stimulated cells,MCP-1 protein level was increased,which was suppressed in the presence of IκK inhibitors.Conclusion:NF-κB pathway can be activated by the TLR2 ligand and inhibited by IκK inhibitors in the ocular surface cell culture system.This cell culture system may be used to evaluate TLR-related innate defences in ocular surface diseases.
基金supported by grants from the National Natural Science Foundation of China(No.82272986 to SY)the Natural Science Foundation of Guangdong Province,China(No.2023A1515010230 to SY)+1 种基金the Science and Technology Foundation of Shenzhen(No.JCYJ20220531094805012 to SY)the Scientific Research Project of Shenzhen Pingshan District Health System(202060 to SY).
文摘Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.
基金supported by the National Natural Science Foundation of China(32072227,32021005)111 Project(BP0719028)the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.
文摘This study aimed to evaluate the effects of Bifi dobacterium breve CCFM683 on psoriasis and to investigate the underlying mechanisms.B.breve CCFM683 significantly ameliorated psoriasis in mice as well as elevated the deoxycholic acid(DCA)and lithocholic acid(LCA)in the colon compared with those of the imiquimod(IMQ)-treated mice.Meanwhile,B.breve CCFM683 increased the relative abundance of DCA-producing Lachnoclostridium and diminished the harmful Desulfovibrio and Prevotellaceae UCG001.Additionally,the farnesoid X receptor(FXR)in the skin was activated and the expression of the Toll-like receptor 4(TLR4)/nuclear factor kappa-B(NF-κB)pathway was inhibited,and the downstream interleukin(IL)-17 and tumor necrosis factor(TNF)-αwere downregulated whereas IL-10 was up-regulated.Moreover,the subsequent hyperproliferation of keratinocytes and the dysfunction of the epidermal barrier were improved.In conclusion,CCFM683 administration ameliorated IMQ-induced psoriasis via modulating gut microbiota,promoting the DCA production,regulating the FXR-TLR4/NF-κB pathway,diminishing proinflammatory cytokines,and regulating keratinocytes and epidermal barrier.These findings may be conducive to elucidating the mechanism for probiotics to ameliorate psoriasis and to promote its clinical trials in skin disease.
基金supported by the Zhejiang Province Traditional Chinese Medicine Health Science and Technology Program(2023ZL570).
文摘Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.
基金funded by the National Key Clinical Program on Orthodontics,the Nature Science Foundation of Shanghai(No.20ZR1443100 and No.21140904500)Shanghai Municipal Health Commission(No.202140504).
文摘Objective Porphyromonas gingivalis(P.gingivalis)is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases,including chronic kidney disease(CKD),but the roles and molecular mechanism of P.gingivalis in CKD pathogenesis are unclear.Methods In this study,an animal model of oral P.gingivalis administration and glomerular mesangial cells(GMCs)cocultured with M1-polarized macrophages and P.gingivalis supernatant were constructed.After seven weeks of P.gingivalis gavaged,peripheral blood was collected to detect the changes in renal function.By collecting the teeth and kidneys of mice,H&E staining and IHC were used to analyze the expression of periodontal inflammatory factors in mice,PAS staining was used to analyze glomerular lesions.The supernatant of macrophages was treated with 5%P.gingivalis supernatant.H&E staining,IHC,Western blot and RT-PCR were applied to analyze renal inflammatory factors,macrophage M1 polarization,NF-κB,NLRP3 and ferroptosis changes in vitro.Results We found that oral P.gingivalis administration induced CKD in mice.P.gingivalis supernatant induced macrophage polarization and inflammatory factor upregulation,which triggered the activation of the NF-κB/NLRP3 pathway and ferroptosis in GMCs.By inhibiting the NF-κB/NLRP3 pathway and ferroptosis in GMCs,cell viability and the inflammatory response were partially alleviated in vitro.Conclusion We demonstrated that P.gingivalis induced CKD in mice by triggering crosstalk between the NFκB/NLRP3 pathway and ferroptosis in GMCs.Overall,our study suggested that periodontitis can promote the pathogenesis of CKD in mice,which provides evidence of the importance of periodontitis therapy in the prevention and treatment of CKD.
基金financially supported by the 2021 Kabrita Nutrition Grant.
文摘Branched-chain fatty acids(BCFAs)are new bioactive fatty acids with anti-inflammatory properties.However,the role of BCFAs in alleviating ulcerative colitis has not been clarified.Herein,we evaluated the protective effect of BCFAs from goat milk in mice with colitis induced using dextran sodium sulfate(DSS)and explored the corresponding mechanism.These results show that BCFAs extracted from goat milk can significantly alleviate weight loss in mice,and reduce the disease activity index and the activity of myeloperoxidase while increasing the content of antioxidant enzymes in colon tissue and reducing the oxidation stress response.These data also show that BCFAs can down-regulate the gene and protein expression of the toll-like receptor 4(TLR4)/nuclear factorκB p65(NF-κB p65)/NOD-like receptor thermal protein domain associated protein 3(NLRP3)signaling pathway,and at the same time significantly reduce the expression of pro-inflammatory factors tumor necrosis factorα(TNF-α),interleukin 1β(IL-1β),and IL-18 in colon tissue,and significantly increase the expression of the anti-inflammatory factor IL-10.In conclusion,these results demonstrated that BCFAs in goat milk exerted effects on colitis-related inflammatory cytokines and inhibited inflammation by inducing the TLR4/NF-κB/NLRP3 pathway to alleviate DSS-induced ulcerative colitis.This study provides evidence for the potential of BCFAs as bioactive fatty acids in food products and to ameliorate ulcerative colitis development in mice.
基金reviewed and approved by the Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Anhui Hospital Institutional Review Board(2022AH-022).
文摘BACKGROUND Ulcer colitis(UC)is a chronic,nonspecific,and noninfectious inflammatory bowel disease.Recently,Toll-like receptors(TLRs)have been found to be closely associated with clinical inflammatory diseases.Achieving complete remission in patients with intermittent periods of activity followed by dormancy is challenging.Moreover,no study has explored the mechanism by which Kuicolong-yu enema decoction retains traditional Chinese medicine enemas to attenuate the inflammatory response in UC.AIM To explore the mechanism by which Kuicolong-yu enema decoction retains traditional Chinese medicine enemas to attenuate the inflammatory response in UC.METHODS This prospective clinical study included patients who met the exclusion criteria in 2020 and 2021.The patients with UC were divided into two groups(control and experimental).The peripheral blood of the experimental and control groups were collected under aseptic conditions.The expression of TLR4 protein,NF-κB,IL-6,and IL-17 was detected in the peripheral blood of patients in the experimental group and control group before and 1 month after taking the drug.Linear co rrelation analysis was used to analyze the relationship between the expression level of TLR4 protein and the expression levels of downstream signal NF-κB and inflammatory factors IL-6 and IL-17,and P<0.05 was considered statistically significant.RESULTS There were no significant differences in the patient characteristics between the control and experimental groups.The results showed that the expression levels of TLR4 and NF-κB in the experimental group were significantly lower than those in the control group(P<0.05).The levels of IL-6 and IL-17 in the experimental group were significantly lower than those in the control group(P<0.05).The TLR4 protein expression in the experimental group was positively correlated with the expression level of downstream signal NF-κB and was positively correlated with the levels of downstream inflammatory cytokines IL-6 and IL-17(r=0.823,P<0.05).CONCLUSION Kuicolong-yu enema decoction retains traditional Chinese medicine enema attenuates the inflammatory response of UC through the TLR4/NF-κB signaling pathway.
文摘Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-translocation-associated (ZFTA, ST-EPN-ZFTA), exhibits the expression of a fusion protein comprising ZFTA and v-rel reticuloendotheliosis viral oncogene homolog A (RELA), an effector transcription factor of the nuclear factor-kappa B (NF-κB) pathway (ZFTA-RELA). The expression of ZFTA-RELA results in the hyperactivation of the oncogenic NF-κB signaling pathway, which ultimately leads to the development of ST-EPN-ZFTA. To identify inhibitors of the NF-κB signaling pathway activated by the expression of ZFTA-RELA, we used a doxycycline-inducible ZFTA-RELA-expressing NF-κB reporter cell line and found that extracts of the fungus Neosartorya spinosa IFM 47025 exhibited NF-κB inhibitory activity. We identified eight compounds [aszonapyrone A (2), sartorypyrone A (3), epiheveadride (4), acetylaszonalenin (5), (R)-benzodiazepinedione (6), aszonalenin (7), sartorypyrone E (8) and (Z, Z)-N,N’-(1,2-bis[(4-methoxyphenyl)methylene]-1,2-ethanediyl)bis-formamide (9)] from N. spinosa IFM 47025 culture extract using a variety of chromatographic techniques. The structures of these compounds were identified through the analysis of various instrumental data (1D, 2D-NMR, MS, and optical rotation). The NF-κB responsive reporter assay indicated that compounds 2, 3, 5, 7, and 9 exhibited inhibitory activity. We further evaluated the inhibitory activity of these compounds against the expression of endogenous NF-κB responsive genes (CCND1, L1CAM, ICAM1, and TNF) and found that compound 2 showed significant inhibitory activity. Further studies are required to elucidate the mechanism of action of compound 2, which may serve as a lead compound for the development of a novel therapy for ST-EPN-ZFTA.
基金Supported by Joint Funding of Yunnan Ministry of Science and Technology,No.2019FF002-048and Beijing Heathco Clinical Oncology Research Foundation,No.Y-Q201802-048.
文摘BACKGROUND Parthenolide(PTL),a sesquiterpene lactone derived from the medicinal herb Chrysanthemum parthenium,exhibits various biological effects by targeting NF-kB,STAT3,and other pathways.It has emerged as a promising adjunct therapy for multiple malignancies.AIM To evaluate the in vitro and in vivo effect of PTL on cyclophosphamide(CTX)metronomic chemotherapy.METHODS The cytotoxicity of PTL and CTX on Lewis lung cancer cells(LLC cells)was assessed by measuring cell activity and apoptosis.The anti-tumor efficiency was evaluated using a tumor xenograft mice model,and the survival of mice and tumor volume were monitored.Additionally,the collected tumor tissues were analyzed for tumor microenvironment indicators and inflammatory factors.RESULTS In vitro,PTL demonstrated a synergistic effect with CTX in inhibiting the growth of LLC cells and promoting apoptosis.In vivo,metronomic chemotherapy com-bined with PTL and CTX improved the survival rate of tumor-bearing mice and reduced tumor growth rate.Furthermore,metronomic chemotherapy combined with PTL and CTX reduced NF-κB activation and improved the tumor immune microenvironment by decreasing tumor angiogenesis,reducing Transforming growth factorβ,andα-SMA positive cells.CONCLUSION PTL is an efficient compound that enhances the metronomic chemotherapy effects of CTX both in vitro and in vivo,suggesting its potential as a supplementary therapeutic strategy in metronomic chemotherapy to improve the chemotherapy effects.
文摘Objective:To investigate the effects of ivabradine on Notch and NF-kappa B signaling pathway in myocardial cells of rats with myocardial infarction.Methods: The model of myocardial infarction was established by ligating the left anterior descending coronary artery. The surviving rats were randomly divided into model group (MI group,n=8) and treatment group (IVA group,n=8). Rats with the same location but without ligation of the left anterior descending coronary artery were used as control group (CON group,n = 8). IVA was administered for 28 d. Hemodynamic and cardiac function indexes of all rats were measured: heart rate (HR), systolic pressure (SBP), diastolic pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and maximum rate of increase and decrease of left ventricular internal pressure (+dp/dt);left ventricular mass index, left ventricular cross-sectional diameter and infarct area;The expression of Notch signaling pathway components mRNA (Notch-1, Dll-4, Hes-1) in rat cardiomyocytes was detected by PT-PCR, and the expression of DICD-1 and P65 protein was detected by western-blot. One-way ANOVA was used for comparison between groups, and SNK was used for comparison between groups.Results: SBP, DBP, MAP, LASP, LVEDP and (+dp/dt) in MI group were lower than those in control group (P<0.05), while IVA was higher than those in MI group (P<0.05). Left ventricular mass index and left ventricular sectional diameter in MI group were significantly higher than those in control group (P<0.05), but lower than those in IVA group (P<0.05). The expression of Notch-1 in MI group was significantly higher than that in control group (P<0.05), but lower than that in IVA group (P<0.05). There was no significant difference in the expression of Dll-4 and Hes-1 mRNA between the three groups (P>0.05). The expression levels of NICD-1 and P 65 in MI group were significantly higher than those in CON group (P<0.05), but lower than those in IVA group (P<0.05). Conclusion: IVA may improve cardiac function and inhibit ventricular remodeling in rats with myocardial infarction through Notch and NF-kappa B signaling pathways.
基金Nanchong city school cooperative research project in 2018(No.18SXHZ0445).
文摘Objective:To investigate the clinical efficacy of dexmedetomidine in the regulation of TLR4/My D88/NF-κB in the prevention of paroxysmal sympathetic over-excitation (PSH) in patients with severe head injury. Methods:One hundred patients with severe head injury who were admitted to our hospital from September 2016 to May 2019 were enrolled. The randomized digital table method was divided into 50 cases in the study group and the control group. Patients in the study group were given dexmedetomidine at a dose of 1.0 μg/kg before anesthesia induction, followed by infusion at 0.4 μg / (kg·h), and the control group was injected with the same amount of normal saline. The incidence of PSH, clinical symptoms, imaging findings, mechanical ventilation time, tracheal intubation/incision duration, ICU hospitalization time, total length of hospital stay, and GCS scores three months after discharge were compared between the two groups. At the same time, the fluorescence intensity, TLR4, NF-κB expression level and tumor necrosis factor-α (TNF-α) expression levels in peripheral blood CD14+ monocytes of the two groups were detected. Results:The incidence of PSH was significantly lower in the study group than in the control group at 7 and 3 months (P<0.05). The total length of hospital stay, duration of ICU hospitalization, intraoperative tracheotomy, and mechanical ventilation time were significantly lower in the study group than in the control group. And the GCS score was higher than the control group, and the difference was statistically significant (P<0.05). In addition, the imaging results showed that there were some differences in the location of imaging lesions between the two groups. The proportion of lesions in the ventricular system and surrounding areas was higher in the control group than in the study group (P<0.05). And the T14-T3 CD14+ PBMC MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate were significantly higher than those of T0 (P<0.05), but the MyD88 fluorescence intensity, TLR4 and NK-κB positive expression rate in the study group were significantly lower than those in the control group at T1~T3 (P<0.05). The levels of serum TNF-α in T1~T3 groups were significantly higher than those in T0 (P<0.05), but the levels of serum TNF-α in T1~T3 in the study group were significantly lower than those in the control group (P< 0.05). Conclusions:Dexmedetomidine can reduce the oxidative stress response in patients with severe head injury by inhibiting TLR4/My D88/NF-κB signaling pathway, thus effectively reducing the risk of PSH and improving the prognosis of patients.
文摘[目的]探讨核转录因子(NF-kappa B p65)和血管内皮生成因子(VEGF)在晚期原发性肝癌(HCC)组织和正常肝脏组织中的表达及其意义。[方法]采用免疫组织化学染色SP法检测65例晚期HCC组织切片(其中36例直径≥5cm,16例5cm>直径>2cm,13例直径≤2cm;28例肝内病灶数目大于1个,37例肝内病灶数目为1个)和30例正常肝脏组织(对照组)中NF-kappa B p65和VEGF抗体的表达水平,采用秩和检验方法分析其差异性,并再以直线相关方法分析NF-kappa B p65和VEGF在HCC中表达的相关性。[结果]各肿瘤组随肿瘤直径的增大,NF-kappa B p65和VEGF表达水平均出现递增的趋势。肝内(肿瘤数目>1个)NF-kappa B p65和VEGF表达水平强于肝内无转移组(P<0.05)。NF-kappa B p65和VEGF在HCC中表达呈正相关。[结论]VEGF有促进肝癌生长和侵袭转移作用,而NF-kappaBp65在HCC生长中有促进VEGF表达上调的作用。