We propose and analyze an epidemiological model to evaluate the effectiveness of bed nets as a prophylactic measure in malaria-endemic areas. The main purpose in this work is the modeling of the aggressiveness of anop...We propose and analyze an epidemiological model to evaluate the effectiveness of bed nets as a prophylactic measure in malaria-endemic areas. The main purpose in this work is the modeling of the aggressiveness of anopheles mosquitoes relative to the way humans use to protect themselves against bites of mosquitoes. This model is a system of several differential equations: the number of equations depends on the particular assumptions of the model. We compute the basic reproduction number, and show that if, the disease free equilibrium (DFE) is globally asymptotically stable on the non-negative orthant. If, the system admits a unique endemic equilibrium (EE) that is globally and asymptotically stable. Numerical simulations are presented corresponding to scenarios typical of malaria-endemic areas, based on data collected in the literature. Finally, we discuss the relative effectiveness of different kinds of bed nets.展开更多
A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations (VIV). Its nonlinear hydrodynamic effects on the coupled wake and structure oscil...A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations (VIV). Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-in, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.展开更多
文摘We propose and analyze an epidemiological model to evaluate the effectiveness of bed nets as a prophylactic measure in malaria-endemic areas. The main purpose in this work is the modeling of the aggressiveness of anopheles mosquitoes relative to the way humans use to protect themselves against bites of mosquitoes. This model is a system of several differential equations: the number of equations depends on the particular assumptions of the model. We compute the basic reproduction number, and show that if, the disease free equilibrium (DFE) is globally asymptotically stable on the non-negative orthant. If, the system admits a unique endemic equilibrium (EE) that is globally and asymptotically stable. Numerical simulations are presented corresponding to scenarios typical of malaria-endemic areas, based on data collected in the literature. Finally, we discuss the relative effectiveness of different kinds of bed nets.
基金Project supported by the National High Techology Research and Development Program of China (863 Program, Grant No2006AA09Z350)the Chinese Academy of Sciences (Grant No KJCX2-YW-L02)
文摘A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations (VIV). Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-in, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.