期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
钙基吸收剂脱碳的模型建立及参数研究
1
作者 胡玥 徐钢 +3 位作者 段栋伟 高亚驰 张锴 杨勇平 《动力工程学报》 CAS CSCD 北大核心 2017年第2期134-139,共6页
针对天然气联合循环(NGCC)电厂烟气CO_2脱除问题,对钙基吸收剂循环煅烧与碳酸化CO_2脱除法进行了研究.利用Matlab建立数学模型,并分析了碳酸化反应温度、碳酸化塔床料量、循环吸收剂摩尔流量以及补充吸收剂摩尔流量对CO_2捕集率的影响.... 针对天然气联合循环(NGCC)电厂烟气CO_2脱除问题,对钙基吸收剂循环煅烧与碳酸化CO_2脱除法进行了研究.利用Matlab建立数学模型,并分析了碳酸化反应温度、碳酸化塔床料量、循环吸收剂摩尔流量以及补充吸收剂摩尔流量对CO_2捕集率的影响.结果表明:由于NGCC电厂烟气中CO_2摩尔分数较低,为达到90%CO_2捕集率(rcc),其碳酸化反应温度应为594℃,明显低于燃煤电厂的碳酸化反应温度(650℃);随着循环次数的增加,吸收剂的吸收能力明显下降;在补充吸收剂摩尔流量(F_0)一定时,r_(cc)随着单位发电量碳酸化塔床料量(W_(CaO))和循环吸收剂摩尔流量(F_R)的增加先大幅增加,后趋于稳定;在W_(CaO)一定时,rcc随着F_0和F_R的增加而增加,但当F_R增加到一定值时,碳酸化塔中床料量不足,使得进入其中的CaO颗粒转化率未全部达到最大平均转化率X_(ave),r_(cc)反而下降. 展开更多
关键词 ngcc电厂 CO2脱除 模型 Ca基循环吸收 转化率
下载PDF
天然气联合循环电厂CO_2捕获整体性能及成本敏感性分析
2
作者 敬朝文 李进 黄忠源 《北京交通大学学报》 CAS CSCD 北大核心 2018年第1期62-68,共7页
为研究天然气联合循环(NGCC)电厂引入燃烧后CO_2捕获系统后电厂整体性能及成本,利用整合环境控制模型(IECM)模拟了一乙醇胺(MEA)吸收剂的燃烧后CO_2捕获NGCC(NGCC+CC)电厂运行情景,其中以无CO_2捕获的NGCC电厂作为参考,同时和等发电量... 为研究天然气联合循环(NGCC)电厂引入燃烧后CO_2捕获系统后电厂整体性能及成本,利用整合环境控制模型(IECM)模拟了一乙醇胺(MEA)吸收剂的燃烧后CO_2捕获NGCC(NGCC+CC)电厂运行情景,其中以无CO_2捕获的NGCC电厂作为参考,同时和等发电量的燃烧后CO_2捕获燃煤电厂(PC+CC)进行对比.为研究NGCC+CC电厂的电力均化成本(LCOE)、CO_2捕获成本及吸收剂再生能耗等关键指标,对各指标的主要影响因子进行了敏感性分析,以优化CO_2捕获系统的运行参数.研究结果表明:MEA吸收剂的燃烧后CO_2捕获系统会降低NGCC电厂的整体效率,效率损失为6.92%,从而导致LCOE升高,从896元/MWh增长至1 020元/MWh,而PC+CC电厂的效率损失为4%.NGCC电厂容量因子和天然气价格是LCOE的主要敏感因素,尤其是天然气价格.NGCC+CC电厂的CO_2捕获成本主要受电厂容量因子、天然气价格及CO_2去除率等影响.吸收剂再生能耗则与吸收剂浓度、蒸汽热含量、贫液负荷、气液比及热电效率等相关. 展开更多
关键词 天然气联合循环电厂 整合环境控制模型 燃烧后CO2捕获 电厂整体性能 敏感性分析
下载PDF
Exergy Efficiency and Environmental Impact of Electricity of a 620 MW-Natural Gas Combined Cycle 被引量:1
3
作者 Muna Hamad Almansoori Zin Eddine Dadach 《Journal of Power and Energy Engineering》 2018年第7期1-21,共21页
In the first part of this investigation, a Natural Gas Combined Cycle (NGCC) producing 620 MW of electricity was simulated using the commercial software Aspen Hysys V9.0 and the Soave-Redlich-Kwong (SRK) equation of s... In the first part of this investigation, a Natural Gas Combined Cycle (NGCC) producing 620 MW of electricity was simulated using the commercial software Aspen Hysys V9.0 and the Soave-Redlich-Kwong (SRK) equation of state. The aim of this second part is to use exergy-based analyses in order to calculate its exergy efficiency and evaluate its environmental impact under standard conditions. For the exergy efficiency, the performance index under investigation is the exergy destruction ratio (yD). The results of the study show that the combustor is the main contributor to the total exergy destruction of the power plant (yD = 24.35%) and has the lowest exergy efficiency of 75.65%. On the other hand, the Heat Recovery Steam Generator (HRSG) has the lowest contribution to the exergy destruction (yD = 5.63%) of the power plant and the highest exergy efficiency of 94.37%. For the overall power plant, the exergy efficiency is equal to 53.28%. For the environmental impact of the power plant, the relative difference of exergy-related environmental impacts (rb) is utilized as the performance index for each equipment of the plant and the environmental impact of a kWh of electricity (EIE) is used to represent the performance index of the overall power plant. In agreement with the exergy analysis, the results indicate that the combustor and the HRSG have respectively the highest (rb = 32.19%) and the lowest (rb = 5.96%) contribution to the environmental impact. The environmental impact of a kWh of electricity of the power plant is 34.26 mPts/kWh (exergy destruction only), and 34.42 mPts/kWh (both exergy destruction and exergy loss). 展开更多
关键词 EXERGY Analysis ngcc power plant Life Cycle IMPACT Assessment (LCIA) Method Environmental IMPACT of ELECTRICITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部