Pd/YZ-Al2O3 (Y and Zr modified Al2O3, and hereafter, labelled as A1) catalysts with 4 wt% additive CeO2 and/or La2O3 were prepared and characterized by X-ray photoelectron spectroscopy (XPS), NO-temperature progra...Pd/YZ-Al2O3 (Y and Zr modified Al2O3, and hereafter, labelled as A1) catalysts with 4 wt% additive CeO2 and/or La2O3 were prepared and characterized by X-ray photoelectron spectroscopy (XPS), NO-temperature programmed desorption (NO-TPD), Nz-adsorption/desorption (Branauer-Emmet-Teller BET method), X-ray diffraction (XRD) and CO-chemisorption. Catalytic activities for CH4, CO and NO conversion were tested in a gas mixture simulated the emissions from natural gas vehicles (NGVs) operated under stoichiometric conditions. The results indicated that all catalysts exhibited excellent catalytic performances for CH4 and CO oxidation and the promoting effect of CeO2 or La2O3 was significant for NO conversion. XPS results showed that the electron density around Pd was increased by CeO2 and/or La2O3, the binding energy of Pd 3d decreased as the order: Pd/Al 〉 Pd/Ce/Al 〉 Pd/La/Al 〉 Pd/CeLa/Al. The electron-rich Pd showed Rh-like catalytic properties which exhibited good activity for the reduction of NO. NO-TPD results showed that the addition of CeO2 and/or La2O3 increased NO adsorption on surface, and promoted the conversion of NO.展开更多
基金supported by the Key Program of National Natural Science Foundation of China (20333030)the National High Technology Research and Development Program of China (863 Program, No. 2006AA06Z347)the National Natural Science Foundation of China (No. 20773090)
文摘Pd/YZ-Al2O3 (Y and Zr modified Al2O3, and hereafter, labelled as A1) catalysts with 4 wt% additive CeO2 and/or La2O3 were prepared and characterized by X-ray photoelectron spectroscopy (XPS), NO-temperature programmed desorption (NO-TPD), Nz-adsorption/desorption (Branauer-Emmet-Teller BET method), X-ray diffraction (XRD) and CO-chemisorption. Catalytic activities for CH4, CO and NO conversion were tested in a gas mixture simulated the emissions from natural gas vehicles (NGVs) operated under stoichiometric conditions. The results indicated that all catalysts exhibited excellent catalytic performances for CH4 and CO oxidation and the promoting effect of CeO2 or La2O3 was significant for NO conversion. XPS results showed that the electron density around Pd was increased by CeO2 and/or La2O3, the binding energy of Pd 3d decreased as the order: Pd/Al 〉 Pd/Ce/Al 〉 Pd/La/Al 〉 Pd/CeLa/Al. The electron-rich Pd showed Rh-like catalytic properties which exhibited good activity for the reduction of NO. NO-TPD results showed that the addition of CeO2 and/or La2O3 increased NO adsorption on surface, and promoted the conversion of NO.