To better understand the role of the-NH_(2)group in adsorption process of phenolic wastewaters,NH_(2)-functionalized MIL-53(Al)composites with activated carbon(NH_(2)-M(Al)@(B)AC)were prepared.The results showed that ...To better understand the role of the-NH_(2)group in adsorption process of phenolic wastewaters,NH_(2)-functionalized MIL-53(Al)composites with activated carbon(NH_(2)-M(Al)@(B)AC)were prepared.The results showed that the-NH_(2)group could increase the mesopore volume for composites,which promotes mass transfer and full utilization of active sites,because hierarchical mesopore structure makes the adsorbent easier to enter the internal adsorption sites.Furthermore,the introduction of the-NH_(2)group can improve the adsorption capacity,decrease the activation energy,and enhance the interaction between the adsorbent and p-nitrophenol,demonstrating that the-NH_(2)group plays a crucial role in the adsorption of p-nitrophenol.The density functional theory calculation results show that the H-bond interaction between the-NH_(2)group in the adsorbent and the-NO_(2)in the p-nitrophenol(adsorption energy of -35.5 kJ·mol^(-1)),and base-acid interaction between the primary-NH_(2)group in the adsorbent and the acidic-OH group in the p-nitrophenol(adsorption energy of -27.3 kJ·mol^(-1))are predominant mechanisms for adsorption in terms of the NH_(2)-functionalized adsorbent.Both NH_(2)-functionalized M(Al)@AC and M(Al)@BAC composites exhibited higher p-nitrophenol adsorption capacity than corresponding nonfunctionalized composites.Among the composites,the NH_(2)-M(Al)@BAC had the highest p-nitrophenol adsorption capacity of 474 mg·g^(-1).展开更多
This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both...This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.展开更多
基金supported by the National Natural Science Foundation of China(22008134)。
文摘To better understand the role of the-NH_(2)group in adsorption process of phenolic wastewaters,NH_(2)-functionalized MIL-53(Al)composites with activated carbon(NH_(2)-M(Al)@(B)AC)were prepared.The results showed that the-NH_(2)group could increase the mesopore volume for composites,which promotes mass transfer and full utilization of active sites,because hierarchical mesopore structure makes the adsorbent easier to enter the internal adsorption sites.Furthermore,the introduction of the-NH_(2)group can improve the adsorption capacity,decrease the activation energy,and enhance the interaction between the adsorbent and p-nitrophenol,demonstrating that the-NH_(2)group plays a crucial role in the adsorption of p-nitrophenol.The density functional theory calculation results show that the H-bond interaction between the-NH_(2)group in the adsorbent and the-NO_(2)in the p-nitrophenol(adsorption energy of -35.5 kJ·mol^(-1)),and base-acid interaction between the primary-NH_(2)group in the adsorbent and the acidic-OH group in the p-nitrophenol(adsorption energy of -27.3 kJ·mol^(-1))are predominant mechanisms for adsorption in terms of the NH_(2)-functionalized adsorbent.Both NH_(2)-functionalized M(Al)@AC and M(Al)@BAC composites exhibited higher p-nitrophenol adsorption capacity than corresponding nonfunctionalized composites.Among the composites,the NH_(2)-M(Al)@BAC had the highest p-nitrophenol adsorption capacity of 474 mg·g^(-1).
文摘This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.