Fe_(2)O_(3)/ZnO/Ag ternary composite photocatalytic material was prepared by simple hydrothermal method,and its structure and photocatalytic properties were studied.The experimental results show that Fe_(2)O_(3)/ZnO/A...Fe_(2)O_(3)/ZnO/Ag ternary composite photocatalytic material was prepared by simple hydrothermal method,and its structure and photocatalytic properties were studied.The experimental results show that Fe_(2)O_(3)/ZnO/Ag exhibits better photocatalytic performance.After two hours of UV irradiation,the degradation rates of orange Ⅱ and methyl orange reached 91.9% and 75.9%,respectively.The design and preparation of the photocatalyst provide a theoretical basis for the practical application of photocatalytic technology.展开更多
The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thereby boosting the performance of photocatalysts.In this study,BiO_(2-x)nanosheets were synthesized throug...The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thereby boosting the performance of photocatalysts.In this study,BiO_(2-x)nanosheets were synthesized through a hydrothermal process and loaded onto NaNbO_(3) microcube to construct a series of BiO_(2-x)/NaNbO_(3) heterojunctions for photocatalytic N_(2) fixation.Results indicated that 2.5%BiO_(2-x)/NaNbO_(3) had the highest photocatalytic performance.The NH_(3) production rate under simulated solar light reached 406.4μmol·L^(-1)·g^(-1)·h^(-1),which reaches 2.6 and 3.8 times that of NaNbO_(3) and BiO_(2-x),respectively.BiO_(2-x)nanosheets primarily act as electron trappers to enhance the separation efficiency of charge carriers.The strong interaction between BiO_(2-x)and NaNbO_(3) facilitates the electron migration between them.Meanwhile,the abundant oxygen vacancies in BiO_(2-x)nanosheets may facilitate the adsorption and activation of N_(2),which may be another possible reason of the high photocatalytic activity of the BiO_(2-x)/NaNbO_(3).This study may offer new insights for the development of semiconductor materials in photocatalytic nitrogen fixation.展开更多
In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge...In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge.The research focused on the interaction of the plasma-generated species and the catalyst,as well as the role of the catalyst in the degradation process.Plasma decomposition of the anthraquinone reactive dye Reactive Blue 19(RB 19) was performed in a selfmade reactor system.Bi_(2)O_(3) was prepared by electrodeposition followed by thermal treatment,and characterized by x-ray diffraction,scanning electron microscopy and energy-dispersive xray techniques.It was observed that the catalyst promoted decomposition of plasma-generated H_(2)O_(2) into ·OH radicals,the principal dye-degrading reagent,which further attacked the dye molecules.The catalyst improved the decolorization rate by 2.5 times,the energy yield by 93.4%and total organic carbon removal by 7.1%.Excitation of the catalyst mostly occurred through strikes by plasma-generated reactive ions and radical species from the air,accelerated by the electric field,as well as by fast electrons with an energy of up to 15 eV generated by the streamers reaching the liquid surface.These strikes transferred the energy to the catalyst and created the electrons and holes,which further reacted with H_(2)O_(2) and water,producing ·OH radicals.This was indentified as the primary role of the catalyst in this process.Decolorization reactions followed pseudo first-order kinetics.Production of H_(2)O_(2) and the dye degradation rate increased with increase in the input voltage.The optimal catalyst dose was 500 mg·dm^(-3).The decolorization rate was a little lower in river water compared with that in deionized water due to the side reactions of ·OH radicals with organic matter and inorganic ions dissolved in the river water.展开更多
基金Funded in Part by the 14th Five Year Plan Hubei Provincial Advantaged Characteristic Disciplines(Groups) Project of Wuhan University of Science and Technology(No.2023A0203)the Natural Science Foundation of Hubei Province(No.2022CFA003)。
文摘Fe_(2)O_(3)/ZnO/Ag ternary composite photocatalytic material was prepared by simple hydrothermal method,and its structure and photocatalytic properties were studied.The experimental results show that Fe_(2)O_(3)/ZnO/Ag exhibits better photocatalytic performance.After two hours of UV irradiation,the degradation rates of orange Ⅱ and methyl orange reached 91.9% and 75.9%,respectively.The design and preparation of the photocatalyst provide a theoretical basis for the practical application of photocatalytic technology.
基金financially supported by the National Natural Science Foundation of China(22172144)Key Research and Development Program of Zhejiang Province(2023C03148)。
文摘The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency,thereby boosting the performance of photocatalysts.In this study,BiO_(2-x)nanosheets were synthesized through a hydrothermal process and loaded onto NaNbO_(3) microcube to construct a series of BiO_(2-x)/NaNbO_(3) heterojunctions for photocatalytic N_(2) fixation.Results indicated that 2.5%BiO_(2-x)/NaNbO_(3) had the highest photocatalytic performance.The NH_(3) production rate under simulated solar light reached 406.4μmol·L^(-1)·g^(-1)·h^(-1),which reaches 2.6 and 3.8 times that of NaNbO_(3) and BiO_(2-x),respectively.BiO_(2-x)nanosheets primarily act as electron trappers to enhance the separation efficiency of charge carriers.The strong interaction between BiO_(2-x)and NaNbO_(3) facilitates the electron migration between them.Meanwhile,the abundant oxygen vacancies in BiO_(2-x)nanosheets may facilitate the adsorption and activation of N_(2),which may be another possible reason of the high photocatalytic activity of the BiO_(2-x)/NaNbO_(3).This study may offer new insights for the development of semiconductor materials in photocatalytic nitrogen fixation.
基金financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (No.451-03-47/2023-01/200124)。
文摘In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge.The research focused on the interaction of the plasma-generated species and the catalyst,as well as the role of the catalyst in the degradation process.Plasma decomposition of the anthraquinone reactive dye Reactive Blue 19(RB 19) was performed in a selfmade reactor system.Bi_(2)O_(3) was prepared by electrodeposition followed by thermal treatment,and characterized by x-ray diffraction,scanning electron microscopy and energy-dispersive xray techniques.It was observed that the catalyst promoted decomposition of plasma-generated H_(2)O_(2) into ·OH radicals,the principal dye-degrading reagent,which further attacked the dye molecules.The catalyst improved the decolorization rate by 2.5 times,the energy yield by 93.4%and total organic carbon removal by 7.1%.Excitation of the catalyst mostly occurred through strikes by plasma-generated reactive ions and radical species from the air,accelerated by the electric field,as well as by fast electrons with an energy of up to 15 eV generated by the streamers reaching the liquid surface.These strikes transferred the energy to the catalyst and created the electrons and holes,which further reacted with H_(2)O_(2) and water,producing ·OH radicals.This was indentified as the primary role of the catalyst in this process.Decolorization reactions followed pseudo first-order kinetics.Production of H_(2)O_(2) and the dye degradation rate increased with increase in the input voltage.The optimal catalyst dose was 500 mg·dm^(-3).The decolorization rate was a little lower in river water compared with that in deionized water due to the side reactions of ·OH radicals with organic matter and inorganic ions dissolved in the river water.