This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both...This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.展开更多
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined wi...The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.展开更多
Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. ...Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnOx/γ-Al2O3 catalysts is 300-400 ℃ . The catalysts maintain nearly 100% NO conversion at 350 ℃. The NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnOx/γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process.展开更多
The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and...The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and a N2 product selectivity of 100%—98.7% during 100 °C to 350 °C at gas hourly space velocity(GHSV)=18900 h-1.In the presence of 0.01% SO2 and 6% H2O at 120 °C,the NOx conversion can maintain 98.5%.At 300 °C and with 0.07% SO2 in reactant stream,the NOx conversion stabilized at 99% as high as the commercial V-W/TiO2 catalyst's level.The steady-state kinetics study shows that O2 played a promoting role.In the presence of less than 1.5% O2,NOx conversion can increase sharply with the increase of O2 concentration.The reaction order was zero with respect to NH3 and first with respect to NO with excess O2 and H2O.The kinetics active energy(Ea) of Mn-W/TiO2 was calculated to be 6.24 kJ/mol according to the kinetic experiment at various temperatures,much lower than those of other catalysts reported in the literature.Mn-W/TiO2 is an excellent catalyst for SCR of NO with NH3 by now.展开更多
An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance ...An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance to H2O and SO2of Fe/TiO2prepared by a template method were better than those of catalysts synthesized using impregnation and coprecipitation.The samples were characterized using N2‐physisorption,transmission electron microscopy,ultraviolet‐visibl spectroscopy,X‐ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fouriertransform spectroscopy.The results showed that Pluronic F127acted as a structural and chemical promoter;it not only promoted the formation of a uniform mesoporous structure,leading to a higher surface area,but also improved dispersion of the active phase.In addition,the larger number of Lewis acidic sites,indicated by the presence of coordinated NH3species(1188cm-1)and the N–H stretching modes of coordinated NH3(3242and3388cm-1),were beneficial to mid‐temperature selective catalytic reduction reactions.展开更多
The CeO2‐TiO2(CeTi)and CeO2/WO3‐TiO2(CeWTi)catalysts were prepared by a sol‐gel precipitation method and their NH3‐NO/NO2 selective catalytic reduction(SCR)performance was studied.N2O formation and effect of oxyge...The CeO2‐TiO2(CeTi)and CeO2/WO3‐TiO2(CeWTi)catalysts were prepared by a sol‐gel precipitation method and their NH3‐NO/NO2 selective catalytic reduction(SCR)performance was studied.N2O formation and effect of oxygen concentration on SCR performance over CeWTi catalyst were also investigated while varying the NO2/NOx ratio.Results indicate that fast SCR behavior of CeWTi catalyst has the best NH3‐NO/NO2 SCR performance due to the catalyst reoxidation rate by NO2 higher than by O2.Compared with CeTi catalyst,CeWTi catalyst exhibits higher de‐NOx performance under NH3‐NO/NO2 SCR conditions.As the CeTi and CeWTi catalysts exhibit similar redox property,addition of WO3 provides more acid sites which accelerate the reaction between NH4NO3 and NO to get a superior low‐temperature activity.Amount of N2O formation shows a peak at 250 oC mainly derived from NH4NO3 decomposition.展开更多
The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a...The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.展开更多
In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied compara...In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.展开更多
ZSM-5 zeolites were directly synthesized on the surface of honeycomb cordierite substrates by hydrothermal method and certified by XRD and SEM techniques; the adhesion of ZSM-5 coatings was evaluated by ultrasonic vib...ZSM-5 zeolites were directly synthesized on the surface of honeycomb cordierite substrates by hydrothermal method and certified by XRD and SEM techniques; the adhesion of ZSM-5 coatings was evaluated by ultrasonic vibration. Cu-ZSM-5/cordierite monolithic catalyst was prepared by ion-exchange and impregnation method and applied for the selective catalytic reduction (SCR) of NO by NH3 using a simulated diesel exhaust. The results show that the cordierite surface is almost completely covered by ZSM-5 crystals and the crystallization time greatly impacts the loadings and adhesion of ZSM-5 coatings on substrate, the NOx removal rate over Cu-ZSM-5/cordierite is above 90% in a temperature range of 240-480℃. Moreover, Cu-ZSM-5/cordierite prepared by different methods shows a wide temperature window (240-540 ℃) with high NO removal activities.展开更多
Copper-exchanged chabazite(Cu/CHA) catalysts have been found to be affected by alkali metal and alkaline earth ions. However, the effects of Na+ ions on Cu/SAPO-34 for ammonia selective catalytic reduction(NH_3-SC...Copper-exchanged chabazite(Cu/CHA) catalysts have been found to be affected by alkali metal and alkaline earth ions. However, the effects of Na+ ions on Cu/SAPO-34 for ammonia selective catalytic reduction(NH_3-SCR) are still unclear. In order to investigate the mechanism, five samples with various Na contents were synthesized and characterized. It was observed that the introduced Na+ ion-exchanges with H+and Cu2+of Cu/SAPO-34. The exchange of H+is easier than that of isolated Cu2+. The exchanged Cu2+ions aggregate and form "CuAl_2O4-like" species.The NH_3-SCR activity of Cu/SAPO-34 decreases with increasing Na content, and the loss of isolated Cu2+and acid sites is responsible for the activity loss.展开更多
CuSO4/TiO2 catalysts with high catalytic activity and excellent resistant to SO2 and H2 O,were thought to be promising catalysts used in Selective catalytic reduction of nitrogen oxides by NH3.The performance of catal...CuSO4/TiO2 catalysts with high catalytic activity and excellent resistant to SO2 and H2 O,were thought to be promising catalysts used in Selective catalytic reduction of nitrogen oxides by NH3.The performance of catalysts is largely affected by calcination temperature.Here,effects of calcination temperature on physicochemical property and catalytic activity of CuSO4/TiO2 catalysts were investigated in depth.Catalyst samples calcined at different temperatures were prepared first and then physicochemical properties of the catalyst were characterized by N2 adsorption-desorption,X-ray diffraction,thermogravimetric analysis,Raman spectra,Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,temperature-pro grammed desorption of NH3,temperature-programmed reduction of H2 and in situ diffuse reflectance infrared Fourier transform spectroscopy.Results revealed that high calcination temperature had three main effects on the catalyst.First,sintering and anatase transform into rutile with increase of calcination temperature,causing a decrement of specific surface area.Second,decomposition of CuSO4 under higher calcination temperature,resulting in disappears of Br(?)nsted acid sites(S-OH),which had an adverse effect on surface acidity.Third,CuO from the decomposition of CuSO4 changed surface reducibility of the catalyst and favored the process of NH3 oxidation to nitrogen oxides(NOx).Thus,catalytic activity of the catalyst calcined under high temperatures(≥600℃)decreased largely.展开更多
Chromium oxide and manganese oxide promoted ZrO2-CeO2 catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NOx with NH3. A series of characterization including X-ray d...Chromium oxide and manganese oxide promoted ZrO2-CeO2 catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NOx with NH3. A series of characterization including X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Bmnaue-Emmett-Teller (BET) surface area analysis, H2 temperature- programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the influence of the physicochemical properties on NH3-SCR activity. Cr-Zr-Ce and Mn-Zr-Ce catalysts are much more active than ZrO2-CeO2 binary oxide for the low temperature NH3-SCR, mainly because of the high specific surface area, more surface oxygen species, improved reducibility derived from synergistic effect among different elements. Mn-Zr-Ce catalyst exhibited high tolerance to SO2 and H2O. Cr-Zr-Ce mixed oxide exhibited〉80% NO,. conversion at a wide temperature window of 100 ℃ 300℃. In situ DRIFT studies showed that the addition of Cr is beneficial to the formation of Bronsted acid sites and prevents the formation of stable nitrate species because of the presence ofCr6 +. The present mixed oxide can be a candidate for the low temperature abatement of NOx.展开更多
A series of CeO2 supported V205 catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic...A series of CeO2 supported V205 catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH3). The effects of 02 and SO2 on catalytic activity were also studied. The catalysts were characterized by specific surface areas (SBET) and X-ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V205 loading and calcination temperature. With the V205 loading increasing from 0 to 10wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400℃. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160℃-300℃. The formation of CeVO4 on the surface of catalysts caused the decrease of redox ability.展开更多
In order to deal with the challenge of the hydrothermal deactivation of selective catalytic reduction of NO by NH3(NH3-SCR)catalyst and extend its lifetime,a novel Cu/SAPO-5/34 catalyst was prepared,and it almostmaint...In order to deal with the challenge of the hydrothermal deactivation of selective catalytic reduction of NO by NH3(NH3-SCR)catalyst and extend its lifetime,a novel Cu/SAPO-5/34 catalyst was prepared,and it almostmaintains its deNOx performance with a high conversion rate of 90%NO,between 175℃and 400℃after under-going the rigorous treatment at 800℃for 12 h.Thus,Cu/SAPO-5/34 is more recalcitrant to the high-temperature hydrothermal deactivation than Cu/SAPO-34.Besides,the formation of N20 is always below 3×10^-6(3 ppm)during the whole reaction temperature.performing an advanced catalytic selectivity.The effect of high-temperature hvdro-thermal treatment on the morphology,structure and texture property,the acid sites,as well as the active copper spe cies were investigated.These characterizations manifest that the optimized high-temperature hydrothermal stability is associated closely with the good structural stability over Cu/SAPO-5/34-HT.which facilitates to preserve reaction sites,and then showing the better hydrothermal stability than Cu/SAPO-34.展开更多
Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of ad...Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of adsorption-transformationdesorption process were investigated over the Ag-impregnated catalysts for lowtemperature selective catalytic oxidation of ammonia(NH_(3)-SCO).The optimal 5 wt.%Ag/Ce_(0.6)Zr_(0.4)O_(2) catalyst presented good NH_(3)-SCO performancewith>90% NH_(3) conversion at temperature(T)≥250°C and 89% N_(2) selectivity.Despite the irregular block shape and underdeveloped specific surface area(∼60m2/g),the naked and Ag-modified Ce_(0.6)Zr_(0.4)O_(2) solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)(mapping),N_(2) adsorptiondesorption test and X-ray diffraction(XRD).H2 temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO_(2) reducibility and synergistic Ag0/Ag+and Ce^(4+)/Ce^(3+)redox cycles.Besides,Ag+/Ag_(2)O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia.NH3-temperature programmed desorption(NH_(3)-TPD)showed more adsorption-desorption capacity to ammoniawere provided by physical,weakandmedium-strong acid sites.Diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure,during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction(i-SCR)reactions were proposed.展开更多
Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introdu...Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introduction of contaminants into Cu-SAPO-18,the quantity of acidic sites and Cu^2+ species in catalyst decreases owing to the replacement of H^+ and Cu^2+ by K^+,Na^+,Ca^2+,and Mg^2+.Furthermore,the loss of isolated Cu^2+ induces the generation of CuO and CuAl2O4-like phases,which causes further loss in the Brunauer-Emmett-Teller surface area of the catalyst.Consequently,the deNOx performance of the contaminated Cu-SAPO-18 catalysts drops.Such decline in NH3-SCR performance becomes more pronounced by increasing the contaminant contents from 0.5 to 1.0 mmol/gcatal.In addition,the deactivation influence of the contaminants on Cu-SAPO-18 is presented in the order of K>Na>Ca>Mg,which is consistent with the order of reduction of acidic sites.To a certain degree,the effect of the acidic sites on the deactivation of Cu-SAPO-18 might be more significant than that of isolated Cu2+ and the catalyst framework.Moreover,kinetic analysis of NH3-SCR was conducted,and the results indicate that there is no influence of contaminants on the NH3-SCR mechanism.展开更多
文摘This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
基金supported by the National Natural Foundation of China(21607019,21503115)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control(OVEC013)the Talent Introduction Project of Chongqing Three Gorges University~~
文摘The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.
基金Projects (50776037,50721005) supported by the National Natural Science Foundation of China
文摘Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnOx/γ-Al2O3 catalysts is 300-400 ℃ . The catalysts maintain nearly 100% NO conversion at 350 ℃. The NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnOx/γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process.
文摘The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and a N2 product selectivity of 100%—98.7% during 100 °C to 350 °C at gas hourly space velocity(GHSV)=18900 h-1.In the presence of 0.01% SO2 and 6% H2O at 120 °C,the NOx conversion can maintain 98.5%.At 300 °C and with 0.07% SO2 in reactant stream,the NOx conversion stabilized at 99% as high as the commercial V-W/TiO2 catalyst's level.The steady-state kinetics study shows that O2 played a promoting role.In the presence of less than 1.5% O2,NOx conversion can increase sharply with the increase of O2 concentration.The reaction order was zero with respect to NH3 and first with respect to NO with excess O2 and H2O.The kinetics active energy(Ea) of Mn-W/TiO2 was calculated to be 6.24 kJ/mol according to the kinetic experiment at various temperatures,much lower than those of other catalysts reported in the literature.Mn-W/TiO2 is an excellent catalyst for SCR of NO with NH3 by now.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA07030300)~~
文摘An Fe/TiO2catalyst with uniform mesopores was synthesized using Pluronic F127as a structuredirecting agent.This catalyst was used for selective catalytic reduction of NO with NH3.The catalytic activity and resistance to H2O and SO2of Fe/TiO2prepared by a template method were better than those of catalysts synthesized using impregnation and coprecipitation.The samples were characterized using N2‐physisorption,transmission electron microscopy,ultraviolet‐visibl spectroscopy,X‐ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fouriertransform spectroscopy.The results showed that Pluronic F127acted as a structural and chemical promoter;it not only promoted the formation of a uniform mesoporous structure,leading to a higher surface area,but also improved dispersion of the active phase.In addition,the larger number of Lewis acidic sites,indicated by the presence of coordinated NH3species(1188cm-1)and the N–H stretching modes of coordinated NH3(3242and3388cm-1),were beneficial to mid‐temperature selective catalytic reduction reactions.
基金supported by the National Natural Science Foundation of China(51775296,51375253)~~
文摘The CeO2‐TiO2(CeTi)and CeO2/WO3‐TiO2(CeWTi)catalysts were prepared by a sol‐gel precipitation method and their NH3‐NO/NO2 selective catalytic reduction(SCR)performance was studied.N2O formation and effect of oxygen concentration on SCR performance over CeWTi catalyst were also investigated while varying the NO2/NOx ratio.Results indicate that fast SCR behavior of CeWTi catalyst has the best NH3‐NO/NO2 SCR performance due to the catalyst reoxidation rate by NO2 higher than by O2.Compared with CeTi catalyst,CeWTi catalyst exhibits higher de‐NOx performance under NH3‐NO/NO2 SCR conditions.As the CeTi and CeWTi catalysts exhibit similar redox property,addition of WO3 provides more acid sites which accelerate the reaction between NH4NO3 and NO to get a superior low‐temperature activity.Amount of N2O formation shows a peak at 250 oC mainly derived from NH4NO3 decomposition.
文摘The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.
基金Project supported by the Guangxi Natural Science Foundation(2014GXNSFAA118057)Guangxi Science and Technology Planning Project(AB16380276)
文摘In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.
基金Project (20906067) supported by the National Natural Science Foundation of China
文摘ZSM-5 zeolites were directly synthesized on the surface of honeycomb cordierite substrates by hydrothermal method and certified by XRD and SEM techniques; the adhesion of ZSM-5 coatings was evaluated by ultrasonic vibration. Cu-ZSM-5/cordierite monolithic catalyst was prepared by ion-exchange and impregnation method and applied for the selective catalytic reduction (SCR) of NO by NH3 using a simulated diesel exhaust. The results show that the cordierite surface is almost completely covered by ZSM-5 crystals and the crystallization time greatly impacts the loadings and adhesion of ZSM-5 coatings on substrate, the NOx removal rate over Cu-ZSM-5/cordierite is above 90% in a temperature range of 240-480℃. Moreover, Cu-ZSM-5/cordierite prepared by different methods shows a wide temperature window (240-540 ℃) with high NO removal activities.
基金financially supported by the National Key Research and Development program(No.2017YFC0211302)the National Natural Science Foundation of China(No.21676195)+1 种基金the Science Fund of State Key Laboratory of Engine Reliability(No.skler-201714)finical support from GM Global Research&Development(No.GAC1539)
文摘Copper-exchanged chabazite(Cu/CHA) catalysts have been found to be affected by alkali metal and alkaline earth ions. However, the effects of Na+ ions on Cu/SAPO-34 for ammonia selective catalytic reduction(NH_3-SCR) are still unclear. In order to investigate the mechanism, five samples with various Na contents were synthesized and characterized. It was observed that the introduced Na+ ion-exchanges with H+and Cu2+of Cu/SAPO-34. The exchange of H+is easier than that of isolated Cu2+. The exchanged Cu2+ions aggregate and form "CuAl_2O4-like" species.The NH_3-SCR activity of Cu/SAPO-34 decreases with increasing Na content, and the loss of isolated Cu2+and acid sites is responsible for the activity loss.
基金supported by the National Natural Science Foundation of China(Nos.21906127,21677114,21876139 and 21922606)the Key R&D Program of Shaanxi Province(Nos.2019SF-244 and 2019ZDLSF05-05-02)+4 种基金the China PostdoctoralScience Foundation(No.2016M602831)Natural Science Foundation of Shaanxi Province,China(No.2019JQ-502)the Fundamental Research Funds for the Central Universities(Nos.xjj2017113 and xjj2017170)financial supports from the China Scholarship Councilthe support of K.C.Wong Education Foundation
文摘CuSO4/TiO2 catalysts with high catalytic activity and excellent resistant to SO2 and H2 O,were thought to be promising catalysts used in Selective catalytic reduction of nitrogen oxides by NH3.The performance of catalysts is largely affected by calcination temperature.Here,effects of calcination temperature on physicochemical property and catalytic activity of CuSO4/TiO2 catalysts were investigated in depth.Catalyst samples calcined at different temperatures were prepared first and then physicochemical properties of the catalyst were characterized by N2 adsorption-desorption,X-ray diffraction,thermogravimetric analysis,Raman spectra,Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,temperature-pro grammed desorption of NH3,temperature-programmed reduction of H2 and in situ diffuse reflectance infrared Fourier transform spectroscopy.Results revealed that high calcination temperature had three main effects on the catalyst.First,sintering and anatase transform into rutile with increase of calcination temperature,causing a decrement of specific surface area.Second,decomposition of CuSO4 under higher calcination temperature,resulting in disappears of Br(?)nsted acid sites(S-OH),which had an adverse effect on surface acidity.Third,CuO from the decomposition of CuSO4 changed surface reducibility of the catalyst and favored the process of NH3 oxidation to nitrogen oxides(NOx).Thus,catalytic activity of the catalyst calcined under high temperatures(≥600℃)decreased largely.
文摘Chromium oxide and manganese oxide promoted ZrO2-CeO2 catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NOx with NH3. A series of characterization including X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Bmnaue-Emmett-Teller (BET) surface area analysis, H2 temperature- programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the influence of the physicochemical properties on NH3-SCR activity. Cr-Zr-Ce and Mn-Zr-Ce catalysts are much more active than ZrO2-CeO2 binary oxide for the low temperature NH3-SCR, mainly because of the high specific surface area, more surface oxygen species, improved reducibility derived from synergistic effect among different elements. Mn-Zr-Ce catalyst exhibited high tolerance to SO2 and H2O. Cr-Zr-Ce mixed oxide exhibited〉80% NO,. conversion at a wide temperature window of 100 ℃ 300℃. In situ DRIFT studies showed that the addition of Cr is beneficial to the formation of Bronsted acid sites and prevents the formation of stable nitrate species because of the presence ofCr6 +. The present mixed oxide can be a candidate for the low temperature abatement of NOx.
文摘A series of CeO2 supported V205 catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH3). The effects of 02 and SO2 on catalytic activity were also studied. The catalysts were characterized by specific surface areas (SBET) and X-ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V205 loading and calcination temperature. With the V205 loading increasing from 0 to 10wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400℃. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160℃-300℃. The formation of CeVO4 on the surface of catalysts caused the decrease of redox ability.
基金Supported by the National Natural Science Foundation of China(No.21802099)the Science and Technology Program of Sichuan Province,China(Nos 2019YFS0498,2018GZ0401).
文摘In order to deal with the challenge of the hydrothermal deactivation of selective catalytic reduction of NO by NH3(NH3-SCR)catalyst and extend its lifetime,a novel Cu/SAPO-5/34 catalyst was prepared,and it almostmaintains its deNOx performance with a high conversion rate of 90%NO,between 175℃and 400℃after under-going the rigorous treatment at 800℃for 12 h.Thus,Cu/SAPO-5/34 is more recalcitrant to the high-temperature hydrothermal deactivation than Cu/SAPO-34.Besides,the formation of N20 is always below 3×10^-6(3 ppm)during the whole reaction temperature.performing an advanced catalytic selectivity.The effect of high-temperature hvdro-thermal treatment on the morphology,structure and texture property,the acid sites,as well as the active copper spe cies were investigated.These characterizations manifest that the optimized high-temperature hydrothermal stability is associated closely with the good structural stability over Cu/SAPO-5/34-HT.which facilitates to preserve reaction sites,and then showing the better hydrothermal stability than Cu/SAPO-34.
基金financially supported by National Natural Science Foundation of China (No.U20A20130)Fundamental Research Funds for the Central Universities (No.06500152)
文摘Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of adsorption-transformationdesorption process were investigated over the Ag-impregnated catalysts for lowtemperature selective catalytic oxidation of ammonia(NH_(3)-SCO).The optimal 5 wt.%Ag/Ce_(0.6)Zr_(0.4)O_(2) catalyst presented good NH_(3)-SCO performancewith>90% NH_(3) conversion at temperature(T)≥250°C and 89% N_(2) selectivity.Despite the irregular block shape and underdeveloped specific surface area(∼60m2/g),the naked and Ag-modified Ce_(0.6)Zr_(0.4)O_(2) solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)(mapping),N_(2) adsorptiondesorption test and X-ray diffraction(XRD).H2 temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO_(2) reducibility and synergistic Ag0/Ag+and Ce^(4+)/Ce^(3+)redox cycles.Besides,Ag+/Ag_(2)O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia.NH3-temperature programmed desorption(NH_(3)-TPD)showed more adsorption-desorption capacity to ammoniawere provided by physical,weakandmedium-strong acid sites.Diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure,during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction(i-SCR)reactions were proposed.
基金supported by the National Natural Science Foundation of China(21473064)~~
文摘Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introduction of contaminants into Cu-SAPO-18,the quantity of acidic sites and Cu^2+ species in catalyst decreases owing to the replacement of H^+ and Cu^2+ by K^+,Na^+,Ca^2+,and Mg^2+.Furthermore,the loss of isolated Cu^2+ induces the generation of CuO and CuAl2O4-like phases,which causes further loss in the Brunauer-Emmett-Teller surface area of the catalyst.Consequently,the deNOx performance of the contaminated Cu-SAPO-18 catalysts drops.Such decline in NH3-SCR performance becomes more pronounced by increasing the contaminant contents from 0.5 to 1.0 mmol/gcatal.In addition,the deactivation influence of the contaminants on Cu-SAPO-18 is presented in the order of K>Na>Ca>Mg,which is consistent with the order of reduction of acidic sites.To a certain degree,the effect of the acidic sites on the deactivation of Cu-SAPO-18 might be more significant than that of isolated Cu2+ and the catalyst framework.Moreover,kinetic analysis of NH3-SCR was conducted,and the results indicate that there is no influence of contaminants on the NH3-SCR mechanism.