A new molybdophosphate, (NH3CH2CH2NH3)2Mo5O15(HPO4)2 has been synthesized under hydrothermal conditions and structurally characterized by single crystal X ray diffractions. The compound crystallizes in the monoclinic,...A new molybdophosphate, (NH3CH2CH2NH3)2Mo5O15(HPO4)2 has been synthesized under hydrothermal conditions and structurally characterized by single crystal X ray diffractions. The compound crystallizes in the monoclinic, space group C2/c, a=1.7633(2)nm, b=1.00122(11) nm, c=1.37624(13)nm, β=96.974(5)°, V=2.4117(5)nm3, Z=4, Dc=2.853g·cm-3, μ(MoKα)=2.766mm-1, F(000)=1992. The structure contains the isolated polyanions of [Mo5O15(HPO4)2]4- units around which the portonated ethylenediamine ions are pos itioned. By hydrogen bond interactions the polyanions are interconnected to form a three dimensional network. Other characterizations by powder XRD, IR and thermal analysis are also described. CCDC: 206321.展开更多
To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was...To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.展开更多
文摘A new molybdophosphate, (NH3CH2CH2NH3)2Mo5O15(HPO4)2 has been synthesized under hydrothermal conditions and structurally characterized by single crystal X ray diffractions. The compound crystallizes in the monoclinic, space group C2/c, a=1.7633(2)nm, b=1.00122(11) nm, c=1.37624(13)nm, β=96.974(5)°, V=2.4117(5)nm3, Z=4, Dc=2.853g·cm-3, μ(MoKα)=2.766mm-1, F(000)=1992. The structure contains the isolated polyanions of [Mo5O15(HPO4)2]4- units around which the portonated ethylenediamine ions are pos itioned. By hydrogen bond interactions the polyanions are interconnected to form a three dimensional network. Other characterizations by powder XRD, IR and thermal analysis are also described. CCDC: 206321.
文摘To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.