Shape-selective methylation of 2-methylnaphthalene (2-MN) was carried out over NH 4 F and Pt modified HZSM-5 (SiO 2 /Al 2 O 3 = 83) catalysts in a fixed-bed down-flow reactor using methanol as methylating agent and 1,...Shape-selective methylation of 2-methylnaphthalene (2-MN) was carried out over NH 4 F and Pt modified HZSM-5 (SiO 2 /Al 2 O 3 = 83) catalysts in a fixed-bed down-flow reactor using methanol as methylating agent and 1,3,5-trimethylbenzene (1,3,5-TMB) as a solvent. Pt promoted HZSM-5 catalysts showed low concentration of coke-like polycondensed aromatics, NH 4 F modification decreased non-shape-selective acid sites. After Pt and NH 4 F co-modification, both conversion of 2-MN and selectivity to 2,6-DMN were improved. 6%NH 4 F/0.5%Pt/HZSM-5 catalyst exhibited 13.8% of 2-MN conversion with 6.2% of 2,6-DMN yield after 7 h time on stream (TOS), and 2,6-/2,7-DMN ratio of 1.7 after 10 h of TOS.展开更多
Alpha-alumina(α-Al_2O_3) platelets were prepared via solid-state reaction using pseudo-boehmite as the starting material, while NH_4F and nano-SiO_2 were used as additives, and nitric acid was used as the binder. The...Alpha-alumina(α-Al_2O_3) platelets were prepared via solid-state reaction using pseudo-boehmite as the starting material, while NH_4F and nano-SiO_2 were used as additives, and nitric acid was used as the binder. The effect of these additives on properties of the alumina platelets was determined via scanning electron microscopy, X-ray diffraction, and measurements of the surface area and silicon content. A mechanism governing their role in the synthesis process was proposed. The results indicated that NH_4F could promote the formation of highly crystalline platelets. Addition of nano-SiO_2 could lead to increase in the diameter and reduction in the thickness of the platelets, and could also prevent their transformation to α-Al_2O_3. This addition weakened the effect of NH_4F because of the reaction of nano-SiO_2 with F-species and the formation of volatile SiF_4.展开更多
北京师范大学无机化学教研室等编写的《无机化学实验》一书的实验二十四,配合物的生成和性质中配位平衡和介质的酸碱性实验中,有如下一段实验内容: “在试管中注入1ml0.5 M FeCl3溶液,再逐滴滴入4 M NH4F至溶液呈无色”。这一实验的原...北京师范大学无机化学教研室等编写的《无机化学实验》一书的实验二十四,配合物的生成和性质中配位平衡和介质的酸碱性实验中,有如下一段实验内容: “在试管中注入1ml0.5 M FeCl3溶液,再逐滴滴入4 M NH4F至溶液呈无色”。这一实验的原理应是:展开更多
基金Supported by the Program for New Century Excellent Talents in University (NCET-04-0268)the Expertise-Introduction Project for Disciplinary Innovation of Universities
文摘Shape-selective methylation of 2-methylnaphthalene (2-MN) was carried out over NH 4 F and Pt modified HZSM-5 (SiO 2 /Al 2 O 3 = 83) catalysts in a fixed-bed down-flow reactor using methanol as methylating agent and 1,3,5-trimethylbenzene (1,3,5-TMB) as a solvent. Pt promoted HZSM-5 catalysts showed low concentration of coke-like polycondensed aromatics, NH 4 F modification decreased non-shape-selective acid sites. After Pt and NH 4 F co-modification, both conversion of 2-MN and selectivity to 2,6-DMN were improved. 6%NH 4 F/0.5%Pt/HZSM-5 catalyst exhibited 13.8% of 2-MN conversion with 6.2% of 2,6-DMN yield after 7 h time on stream (TOS), and 2,6-/2,7-DMN ratio of 1.7 after 10 h of TOS.
基金supported by the Technology Development(Commission) Project of SINOPEC Catalyst Co.Ltd(Grant No.14-05-01)
文摘Alpha-alumina(α-Al_2O_3) platelets were prepared via solid-state reaction using pseudo-boehmite as the starting material, while NH_4F and nano-SiO_2 were used as additives, and nitric acid was used as the binder. The effect of these additives on properties of the alumina platelets was determined via scanning electron microscopy, X-ray diffraction, and measurements of the surface area and silicon content. A mechanism governing their role in the synthesis process was proposed. The results indicated that NH_4F could promote the formation of highly crystalline platelets. Addition of nano-SiO_2 could lead to increase in the diameter and reduction in the thickness of the platelets, and could also prevent their transformation to α-Al_2O_3. This addition weakened the effect of NH_4F because of the reaction of nano-SiO_2 with F-species and the formation of volatile SiF_4.