Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co...Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.展开更多
Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions...Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions were synthesized by a facile solvothermal route.The resultant materials were examined by X-ray photoelectron spectrometer(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),photoluminescence spectroscopy(PL),Fourier transform infrared spectroscopy(FT-IR),UV-Vis diffuse reflection spectroscopy(UV-vis DRS),photocurrent density,electrochemical impedance spectroscopy(EIS),and Brunauer–Emmett–Teller(BET)analyses.After the integration of Fe-MOF with GCN-NSh/Bi_(5)O_(7)Br,the removal constant of tetracycline over the optimal GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite was promoted 33 times compared with that of the pristine GCN.The GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite showed superior photoactivity to azithromycin,metronidazole,and cephalexin removal that was 36.4,20.2,and 14.6 times higher than that of pure GCN,respectively.Radical quenching tests showed that·O_(2)-and h+mainly contributed to the elimination reaction.In addition,the nanocomposite maintained excellent activity after 4 successive cycles.Based on the developed n–n heterojunctions among n-GCN-NSh,n-Bi_(5)O_(7)Br,and n-Fe-MOF semiconductors,the double S-scheme charge transfer mechanism was proposed for the destruction of the selected antibiotics.展开更多
To address the limitations of the separate fluoride removal or detection in the existing materials,herein,amino-decorated metal organic frameworks NH_(2)-MIL-53(Al)have been succinctly fabricated by a sol-hydrothermal...To address the limitations of the separate fluoride removal or detection in the existing materials,herein,amino-decorated metal organic frameworks NH_(2)-MIL-53(Al)have been succinctly fabricated by a sol-hydrothermal method for simultaneous removal and determination of fluoride.As a consequence,the proposed NH_(2)-MIL-53(Al)features high uptake capacity(202.5 mg/g)as well as fast adsorption rate,being capable of treating 5 ppm of fluoride solution to below the permitted threshold in drinking water within 15 min.Specifically,the specific binding between fluoride and NH_(2)-MIL-53(Al)results in the release of fluorescent ligand NH2-BDC,conducive to the determination of fluoride via a concentration-dependent fluorescence enhancement effect.As expected,the resulting NH_(2)-MIL-53(Al)sensor exhibits selective and sensitive detection(with the detection limit of 0.31μmol/L)toward fluoride accompanied with a wide response interval(0.5-100μmol/L).More importantly,the developed sensor can be utilized for fluoride detection in practical water systems with satisfying recoveries from 89.6% to 116.1%,confirming its feasibility in monitoring the practical fluoride-contaminated waters.展开更多
Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) a...Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) and activated MIL-101(Fe)) were synthesized and added to PEO-based solid composite electrolytes(SCEs). Furthermore, the role of the —NH_(2) groups and open metal sites(OMSs) were both examined. Different ratios of MOFs vs polymers were also studied by the electrochemical characterizations. At last, we successfully designed a novel solid composite electrolyte containing activated NH_(2)-MIL-101(Fe),PEO, Li TFSI and PVDF for the high-performance all-solid-state lithium-metal batteries. This work might provide new insight to understand the interactions between polymers and functional groups or OMSs of MOFs better.展开更多
Nanometer blocks of amide-functionalized Fe(Ⅲ)-based metal-organic frameworks,NH2-MIL-53(Fe),were prepared via ultrasonic method without any surfactants at room temperature and atmospheric pressure.The characterizati...Nanometer blocks of amide-functionalized Fe(Ⅲ)-based metal-organic frameworks,NH2-MIL-53(Fe),were prepared via ultrasonic method without any surfactants at room temperature and atmospheric pressure.The characterization for the as-prepared nano-structured MOFs was established by XRD,SEM,TEM,XPS and N2 adsorption-desorption.The as-prepared sample with high specific surface area(179.9 m^(2)·g^(-1))showed excellent adsorption for methylene blue in the liquid phase.The as-prepared NH_(2)-MIL-53(Fe)adsorbent seems to be a promising material in practice for organic dye removal from aqueous solution.展开更多
For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the...For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites.In this work,SCEs based on PVDF-HFP/PMMA matrix containing MOFs(NH2-MIL-53(Al))and LiTFSI were designed and synthesized employing an easy solution casting method.The synthesized samples were examined by XRD,SEM,EDS,and electrochemical tests.It was found that MPP-2 SCE not only has excellent ionic conductivity at 60℃ of 5.54×10^(−4) S cm^(−1),but also exhibits superior interfacial compatibility in Li||Li symmetric batteries,which can constantly cycle for about 800 h at 0.1 mA cm^(−2) with no short-circuiting.The assembled Li|MPP-2|LiFePO4 cell exhibited a first discharge specific capacity of up to 157.1 mAh g^(−1) at 60℃ and 0.2 C.This work may help to further advance the progress of ASSLBs in the future.展开更多
基金financially supported by National Natural Science Foundation of China(21701083)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_3137)。
文摘Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.
文摘Novel graphitic carbon nitride(g-C_(3)N_(4))nanosheet/Bi_(5)O_(7)Br/NH_(2)-MIL-88B(Fe)photocatalysts(denoted as GCN-NSh/Bi_(5)O_(7)Br/FeMOF,in which MOF is metal–organic framework)with double S-scheme heterojunctions were synthesized by a facile solvothermal route.The resultant materials were examined by X-ray photoelectron spectrometer(XPS),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),photoluminescence spectroscopy(PL),Fourier transform infrared spectroscopy(FT-IR),UV-Vis diffuse reflection spectroscopy(UV-vis DRS),photocurrent density,electrochemical impedance spectroscopy(EIS),and Brunauer–Emmett–Teller(BET)analyses.After the integration of Fe-MOF with GCN-NSh/Bi_(5)O_(7)Br,the removal constant of tetracycline over the optimal GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite was promoted 33 times compared with that of the pristine GCN.The GCN-NSh/Bi_(5)O_(7)Br/Fe-MOF(15wt%)nanocomposite showed superior photoactivity to azithromycin,metronidazole,and cephalexin removal that was 36.4,20.2,and 14.6 times higher than that of pure GCN,respectively.Radical quenching tests showed that·O_(2)-and h+mainly contributed to the elimination reaction.In addition,the nanocomposite maintained excellent activity after 4 successive cycles.Based on the developed n–n heterojunctions among n-GCN-NSh,n-Bi_(5)O_(7)Br,and n-Fe-MOF semiconductors,the double S-scheme charge transfer mechanism was proposed for the destruction of the selected antibiotics.
基金supported by the National Key R&D Program of China(No.2017YFA0207202)the National Natural Science Foundation of China(No.51572263,No.51772299,No.41701259).
文摘To address the limitations of the separate fluoride removal or detection in the existing materials,herein,amino-decorated metal organic frameworks NH_(2)-MIL-53(Al)have been succinctly fabricated by a sol-hydrothermal method for simultaneous removal and determination of fluoride.As a consequence,the proposed NH_(2)-MIL-53(Al)features high uptake capacity(202.5 mg/g)as well as fast adsorption rate,being capable of treating 5 ppm of fluoride solution to below the permitted threshold in drinking water within 15 min.Specifically,the specific binding between fluoride and NH_(2)-MIL-53(Al)results in the release of fluorescent ligand NH2-BDC,conducive to the determination of fluoride via a concentration-dependent fluorescence enhancement effect.As expected,the resulting NH_(2)-MIL-53(Al)sensor exhibits selective and sensitive detection(with the detection limit of 0.31μmol/L)toward fluoride accompanied with a wide response interval(0.5-100μmol/L).More importantly,the developed sensor can be utilized for fluoride detection in practical water systems with satisfying recoveries from 89.6% to 116.1%,confirming its feasibility in monitoring the practical fluoride-contaminated waters.
基金financially supported by National Natural Science Foundation of China (21701083)Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_3137)。
文摘Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) and activated MIL-101(Fe)) were synthesized and added to PEO-based solid composite electrolytes(SCEs). Furthermore, the role of the —NH_(2) groups and open metal sites(OMSs) were both examined. Different ratios of MOFs vs polymers were also studied by the electrochemical characterizations. At last, we successfully designed a novel solid composite electrolyte containing activated NH_(2)-MIL-101(Fe),PEO, Li TFSI and PVDF for the high-performance all-solid-state lithium-metal batteries. This work might provide new insight to understand the interactions between polymers and functional groups or OMSs of MOFs better.
基金Supported by the Fujian Provincial Key Laboratory of ecotoxicological effects and Control of New pollutants(PY19001)the Innovation and Entrepreneurship training Program for College students in 2019(201910402063)。
文摘Nanometer blocks of amide-functionalized Fe(Ⅲ)-based metal-organic frameworks,NH2-MIL-53(Fe),were prepared via ultrasonic method without any surfactants at room temperature and atmospheric pressure.The characterization for the as-prepared nano-structured MOFs was established by XRD,SEM,TEM,XPS and N2 adsorption-desorption.The as-prepared sample with high specific surface area(179.9 m^(2)·g^(-1))showed excellent adsorption for methylene blue in the liquid phase.The as-prepared NH_(2)-MIL-53(Fe)adsorbent seems to be a promising material in practice for organic dye removal from aqueous solution.
基金supported by National Natural Science Foundation of China(grant Nos.21701083,22179054)The Ministry of Science and Technology of the People's Republic of China(grant No.G2023014022L)Jiangsu Provincial Key Research and Development Program(grant No.BZ2023010).
文摘For all-solid-state lithium batteries(ASSLBs),polymer-blended solid composite electrolytes(SCEs)have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites.In this work,SCEs based on PVDF-HFP/PMMA matrix containing MOFs(NH2-MIL-53(Al))and LiTFSI were designed and synthesized employing an easy solution casting method.The synthesized samples were examined by XRD,SEM,EDS,and electrochemical tests.It was found that MPP-2 SCE not only has excellent ionic conductivity at 60℃ of 5.54×10^(−4) S cm^(−1),but also exhibits superior interfacial compatibility in Li||Li symmetric batteries,which can constantly cycle for about 800 h at 0.1 mA cm^(−2) with no short-circuiting.The assembled Li|MPP-2|LiFePO4 cell exhibited a first discharge specific capacity of up to 157.1 mAh g^(−1) at 60℃ and 0.2 C.This work may help to further advance the progress of ASSLBs in the future.