A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are sti...A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.展开更多
High crystallinity of TiOwas prepared by a modified alcohothermal method, in which titanium isopropoxide was used as the titania precursor, absolute ethanol as the reaction medium, and NHHCOas the raw materials for re...High crystallinity of TiOwas prepared by a modified alcohothermal method, in which titanium isopropoxide was used as the titania precursor, absolute ethanol as the reaction medium, and NHHCOas the raw materials for release of water, ammonia and carbon dioxides via in-situ decomposition. The X-ray powder diffraction(XRD) and transmission electron microscope(TEM) measurements showed that water and ammonia from the in-situ decomposition of NHHCOplayed an important role in conducting the size, shape, crystallinity and microstructure of TiO. The photoluminescence spectroscopy and photocurrent measurements indicated that enhanced crystallinity could hinder the recombination and promote the separation of electron-hole pairs in TiO, which contribute to the improvement of photocatalytic activity.Methyl orange photodegradation under UV light confirmed that high crystallinity of TiOdid present a high photocatalytic activity due to the effective separation of photoinduced charges.展开更多
基金supported by the National Natural Science Foundation of China(31421092)the Central Publicinterest Scientific Institution Basal Research Fund,China(1610232023023)。
文摘A mixed nitrate (NO_(3)^(–)) and ammonium (NH_(4)^(+)) supply can promote root growth in maize (Zea mays),however,the changes in root morphology and the related physiological mechanism under different N forms are still unclear.Here,maize seedlings were grown hydroponically with three N supplied in three different forms (NO_(3)^(–)only,75/25 NO_(3)^(–)/NH_(4)^(+)and NH_(4)^(+)only).Compared with sole NO_(3)^(–)or NH_(4)^(+),the mixed N supply increased the total root length of maize but did not affect the number of axial roots.The main reason was the increased total lateral root length,while the average lateral root (LR) length in each axle was only slightly increased.In addition,the average LR density of 2nd whorl crown root under mixed N was also increased.Compared with sole nitrate,mixed N could improve the N metabolism of roots (such as the N influx rate,nitrate reductase (NR) and glutamine synthase (GS)enzyme activities and total amino content of the roots).Experiments with exogenously added NR and GS inhibitors suggested that the increase in the average LR length under mixed N was related to the process of N assimilation,and whether the NR mediated NO synthesis participates in this process needs further exploration.Meanwhile,an investigation of the changes in root-shoot ratio and carbon (C) concentration showed that C transportation from shoots to roots may not be the key factor in mediating lateral root elongation,and the changes in the sugar concentration in roots further proved this conclusion.Furthermore,the synthesis and transportation of auxin in axial roots may play a key role in lateral root elongation,in which the expression of ZmPIN1B and ZmPIN9 may be involved in this pathway.This study preliminarily clarified the changes in root morphology and explored the possible physiological mechanism under a mixed N supply in maize,which may provide some theoretical basis for the cultivation of crop varieties with high N efficiency.
基金support of the National Natural Science Foundation of China(No.21163008,No.21366020)Jiangxi Collaborative Innovation Center for in vitro diagnostic reagents and instruments,the Natural Science Foundation of Jiangxi Province(No.20114BAB203009)+1 种基金Scientific & Technological Project of Jiangxi Science and Technology Normal University(No.2013ZDPYJD01,No.2015CXTD003)Graduate Innovation Foundation of Jiangxi Science and Technology Normal University(No.YC2014-X2)
文摘High crystallinity of TiOwas prepared by a modified alcohothermal method, in which titanium isopropoxide was used as the titania precursor, absolute ethanol as the reaction medium, and NHHCOas the raw materials for release of water, ammonia and carbon dioxides via in-situ decomposition. The X-ray powder diffraction(XRD) and transmission electron microscope(TEM) measurements showed that water and ammonia from the in-situ decomposition of NHHCOplayed an important role in conducting the size, shape, crystallinity and microstructure of TiO. The photoluminescence spectroscopy and photocurrent measurements indicated that enhanced crystallinity could hinder the recombination and promote the separation of electron-hole pairs in TiO, which contribute to the improvement of photocatalytic activity.Methyl orange photodegradation under UV light confirmed that high crystallinity of TiOdid present a high photocatalytic activity due to the effective separation of photoinduced charges.