Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and...Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.展开更多
氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究...氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。展开更多
基金supported by grants from the National Natural Science Foundation of China(Nos.81960732 and 82060733)the Natural Science Foundation of Jiangxi Province(No.20224BAB206111)+2 种基金the Science and Technology Plan of Jiangxi Provincial Health Commission(No.202311141)the Open Project of Jiangxi Provincial Key Laboratory of Drug Design and Evaluation(No.JKLDE-KF-2101)the Open Project of Key Laboratory of Modern Preparation of TCM,Ministry of Education,Jiangxi University of Chinese Medicine(No.TCM-201911).
文摘Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.
文摘氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。