The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size o...The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size on uniformity and quantity of silicon carbide particles in nickel-silicon carbide composite coatings was investigated.It was found that particle size affects the nucleation overpotential,with 40 nm silicon carbide nanoparticles more effective in promoting nickel nucleation than 500 nm particles due to an increase in active nucleation sites.In terms of surfactants,anionic surfactant sodium dodecyl sulfate(SDS)produced better dispersion of 40 nm silicon carbide particles than cationic surfactant cetyltrimethyl ammonium bromide(CTAB),but little difference was found between the two when 500 nm silicon carbide particles were used.Thus,although the suspension of silicon carbide particles can be improved and their co-deposition can be promoted with a cationic surfactant CTAB,it is less effective than an anionic surfactant SDS in terms of surface finish.展开更多
Three pillar-layered metal-organic frameworks(MOFs) based on M(HBTC)(4,4'-bipy).3DMF(M =Ni, Co, and Zn; HBTC = 1,3,5-benzenetricarboxylic acid, 4,4'-bipy = 4,4′-bipyridine) were synthesized using a solvothe...Three pillar-layered metal-organic frameworks(MOFs) based on M(HBTC)(4,4'-bipy).3DMF(M =Ni, Co, and Zn; HBTC = 1,3,5-benzenetricarboxylic acid, 4,4'-bipy = 4,4′-bipyridine) were synthesized using a solvothermal method. Zn(HBTC)(4,4'-bipy).3DMF was synthesized for the first time using both a solvothermal and microwave method, and subsequently characterized by various physicochemical methods. The structure of M(HBTC)(4,4'-bipy).3DMF consisted of honeycomb grid layers of M2+ ions and BTC units, which were further linked by the 4,4'-bipy pillars to form a three-dimensional highly porous framework. All the MOFs displayed excellent synergistic catalytic properties with alkyl ammonium halides(TBAX) in the solventless fixation of CO_2 with epoxides to produce cyclic carbonates. The catalytic activities of these MOFs followed the trend Zn Co Ni,which was explained by the acid-base bifunctional properties. The microwave-synthesized Zn(HBTC)(4,4'-bipy).3DMF material exhibited physical, chemical, and catalytic properties that were similar to those of the catalyst obtained using a conventional solvothermal synthesis. The scope of various parameters, including recyclability, was studied, and a plausible reaction mechanism was suggested.展开更多
基金Project(20180550242)supported by the Liaoning Science and Technology Plan,China。
文摘The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size on uniformity and quantity of silicon carbide particles in nickel-silicon carbide composite coatings was investigated.It was found that particle size affects the nucleation overpotential,with 40 nm silicon carbide nanoparticles more effective in promoting nickel nucleation than 500 nm particles due to an increase in active nucleation sites.In terms of surfactants,anionic surfactant sodium dodecyl sulfate(SDS)produced better dispersion of 40 nm silicon carbide particles than cationic surfactant cetyltrimethyl ammonium bromide(CTAB),but little difference was found between the two when 500 nm silicon carbide particles were used.Thus,although the suspension of silicon carbide particles can be improved and their co-deposition can be promoted with a cationic surfactant CTAB,it is less effective than an anionic surfactant SDS in terms of surface finish.
文摘Three pillar-layered metal-organic frameworks(MOFs) based on M(HBTC)(4,4'-bipy).3DMF(M =Ni, Co, and Zn; HBTC = 1,3,5-benzenetricarboxylic acid, 4,4'-bipy = 4,4′-bipyridine) were synthesized using a solvothermal method. Zn(HBTC)(4,4'-bipy).3DMF was synthesized for the first time using both a solvothermal and microwave method, and subsequently characterized by various physicochemical methods. The structure of M(HBTC)(4,4'-bipy).3DMF consisted of honeycomb grid layers of M2+ ions and BTC units, which were further linked by the 4,4'-bipy pillars to form a three-dimensional highly porous framework. All the MOFs displayed excellent synergistic catalytic properties with alkyl ammonium halides(TBAX) in the solventless fixation of CO_2 with epoxides to produce cyclic carbonates. The catalytic activities of these MOFs followed the trend Zn Co Ni,which was explained by the acid-base bifunctional properties. The microwave-synthesized Zn(HBTC)(4,4'-bipy).3DMF material exhibited physical, chemical, and catalytic properties that were similar to those of the catalyst obtained using a conventional solvothermal synthesis. The scope of various parameters, including recyclability, was studied, and a plausible reaction mechanism was suggested.