In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders wa...In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).展开更多
The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendri...The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.展开更多
Microstructural evolution and the relationship between microstructure and property during heat treatments in a new NiAl-based alloy(Ni-26.6Al-13.4Cr-8.1Co-4.3Ti-1.3W-0.9Mo,molar fraction,%))were investigated.The as-ca...Microstructural evolution and the relationship between microstructure and property during heat treatments in a new NiAl-based alloy(Ni-26.6Al-13.4Cr-8.1Co-4.3Ti-1.3W-0.9Mo,molar fraction,%))were investigated.The as-cast alloy is composed of NiAl matrix and Cr3Ni2 phase with poor ductility.The Cr3Ni2 phase is distributed as a network along the NiAl grain boundaries.Subsequent heat treatment(1 523 K,20 h,air cooling+1 123 K,16 h,furnace cooling)leads to the dissolution of Cr3Ni2 phase and the precipitation of lath-shaped Ni3Al phase andα-Cr particles,resulting in the improvement of compressive properties and fracture toughness at room temperature.Followed by long-term thermal exposure(1 173 K,8 500 h),it is found that the residual Cr3Ni2 phase keeps stable while theα-Cr particles coarsen and a great mass of lath-shaped Ni3Al precipitates are degenerated,which compromises most of the above improvements of mechanical properties through heat treatment.展开更多
基金Project (2012CB723906) supported by the National Basic Research Program of China
文摘In order to develop the liquid phase sintering process of WC-Ni3Al-B composites,the preparation process of WC+Ni3Al prealloyed powder by reaction synthesis of carbonyl Ni,analytical purity Al and coarse WC powders was investigated.DSC and XRD were adopted to study the procedure of phase transformation for the 3Ni+Al and 70%WC+(3Ni+Al) mixed powders in temperature ranges of 550-1200 °C and 25-1400 °C,respectively.The results demonstrate that the formation mechanism of Ni3Al depends on the reaction temperature.Besides WC phase,there exist Ni2Al3,NiAl and Ni3Al intermetallics in the powder mixture after heat treatment at 200-660 °C,while only NiAl and Ni3Al exist at 660-1100 °C.Homogeneous WC+Ni3Al powder mixture can be obtained in the temperature range of 1100-1200 °C.The WC-30%(Ni3Al-B) composites prepared from the mixed powders by conventional powder metallurgy technology show nearly full density and the shape of WC is round.WC-30%(Ni3Al-B) composites exhibit higher hardness of 9.7 GPa,inferior bending strength of 1800 MPa and similar fracture toughness of 18 MPa-m1/2 compared with commercial cemented carbides YGR45(WC-30%(Co-Ni-Cr)).
基金Project (50971005) supported by the National Natural Science Foundation of China
文摘The recrystallization kinetics and microstructural evolution of a Ni3Al-based single crystal superalloy were presented, especially the different recrystallization behaviors between the dendrite arm and the interdendritic region. The single crystal alloy was deformed by grit blasting. A succeeding annealing under inert atmosphere at 1280 ℃ for different time led to the formation of recrystallized grains close to the grit blasting surface. It was found that the recrystallization depth and velocity in the dendrite arm were respectively deeper and faster than those in the interdendritic region where the Y-NiMo phase existed. The recrystallization process in the interdendritic region was significantly inhibited by the Y-NiMo precipitates. However, the pinning effect gradually weakened with the annealing time due to the dissolution of the Y-NiMo phase, and the recrystallization depth in the dendrite arm was deeper than that in the interdendritic region.
文摘Microstructural evolution and the relationship between microstructure and property during heat treatments in a new NiAl-based alloy(Ni-26.6Al-13.4Cr-8.1Co-4.3Ti-1.3W-0.9Mo,molar fraction,%))were investigated.The as-cast alloy is composed of NiAl matrix and Cr3Ni2 phase with poor ductility.The Cr3Ni2 phase is distributed as a network along the NiAl grain boundaries.Subsequent heat treatment(1 523 K,20 h,air cooling+1 123 K,16 h,furnace cooling)leads to the dissolution of Cr3Ni2 phase and the precipitation of lath-shaped Ni3Al phase andα-Cr particles,resulting in the improvement of compressive properties and fracture toughness at room temperature.Followed by long-term thermal exposure(1 173 K,8 500 h),it is found that the residual Cr3Ni2 phase keeps stable while theα-Cr particles coarsen and a great mass of lath-shaped Ni3Al precipitates are degenerated,which compromises most of the above improvements of mechanical properties through heat treatment.