The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information belo...Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.展开更多
基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作...基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.展开更多
针对点云配准过程中点云数据冗余、易出现误匹配点对和配准精度低的问题,提出了一种融合超体素及几何特征的点云配准方法。首先使用超体素与法向量信息相结合的方法提取特征点;其次,在粗配准中,通过使用快速特征点直方图(Fast Point Fea...针对点云配准过程中点云数据冗余、易出现误匹配点对和配准精度低的问题,提出了一种融合超体素及几何特征的点云配准方法。首先使用超体素与法向量信息相结合的方法提取特征点;其次,在粗配准中,通过使用快速特征点直方图(Fast Point Feature Histograms,FPFH)进行特征描述,采用双向最近邻比获取初始特征点对应关系,基于法向量夹角策略和随机采样一致性(Random Sample Consensus,RANSAC)算法进行对应关系的优化,获取良好的初始位姿;最后,在精配准中,基于初始位姿与改进的迭代最近点算法(Iterative Closest Point,ICP)算法完成点云配准。通过在斯坦福数据集中进行配准实验,验证了所提算法具有更好的鲁棒性,能高效且精准的完成点云配准。展开更多
针对机器人遭遇绑架、系统故障重启而产生的定位丢失问题,提出一种基于ResNet的机器人重定位方法。所提方法将重定位分为基于残差网络(residual network,ResNet)的粗匹配和基于最近点迭代(iterative closest point,ICP)细匹配2个阶段。...针对机器人遭遇绑架、系统故障重启而产生的定位丢失问题,提出一种基于ResNet的机器人重定位方法。所提方法将重定位分为基于残差网络(residual network,ResNet)的粗匹配和基于最近点迭代(iterative closest point,ICP)细匹配2个阶段。在粗匹配阶段,将激光点云数据转换为图像,然后将相邻时间的图像堆叠成多通道图像作为ResNet的输入,以增强图像的时序特征。在细匹配阶段,ResNet输出机器人的预测位置,并将预测结果作为ICP算法的初值进行点云细匹配,从而获取最终位姿。对于相似环境,提出动态重定位方法,通过移动机器人进行多次重定位避免误匹配的情况。仿真实验结果表明:该方法与增强蒙特卡罗定位(augmented Monte Carlo localization,AMCL)算法进行了对比,定位用时降低了8.2s,定位成功率提升了43.4%,证明了该算法具有更好的重定位效果。展开更多
In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rap...In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rapid detection for surface thermal deformation. Firstly,the basic principle of the ICP algorithm for registration of a free surface is given,and the shortcomings of the ICP algorithm in the registration of surface are analysed,such as its complex computation,long calculation time,low efficiency,and relatively strict initial registration position. Then an improved FICP algorithm based on design coordinate guidance is proposed. Finally,the FICP algorithm is applied to the fast registration test for the surface thermal deformation of a paraboloid antenna. Results indicate that the approach offers better performance with regard to fast surface registration and the algorithm is more simple,efficient,and easily realized in practical engineering application.展开更多
For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with p...For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with point-normal method, further refinement is achieved by using an improved iterative closest point (ICP) algorithm. Compared with other methods used for mult-view registration, this approach is automatic because no geometric feature, such as line, plane or sphere needs to be extracted from the original point cloud manually. A good initial alignment can be acquired automatically and the registration accuracy and efficiency is proven better than the normal point-point ICP algorithm both experimentally and theoretically.展开更多
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金supported by the National Natural Science Foundation of China,Grant Number 41961060by the Program for Innovative Research Team (in Science and Technology) in the University of Yunnan Province,Grant Number IRTSTYN+1 种基金by the Scientific Research Fund Project of the Education Department of Yunnan Province,Grant Numbers 2020J0256 and 2021J0438by the Postgraduate Scientific Research and Innovation Fund Project of Yunnan Normal University,Grant Number YJSJJ21-A08
文摘Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.
文摘基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.
文摘针对机器人遭遇绑架、系统故障重启而产生的定位丢失问题,提出一种基于ResNet的机器人重定位方法。所提方法将重定位分为基于残差网络(residual network,ResNet)的粗匹配和基于最近点迭代(iterative closest point,ICP)细匹配2个阶段。在粗匹配阶段,将激光点云数据转换为图像,然后将相邻时间的图像堆叠成多通道图像作为ResNet的输入,以增强图像的时序特征。在细匹配阶段,ResNet输出机器人的预测位置,并将预测结果作为ICP算法的初值进行点云细匹配,从而获取最终位姿。对于相似环境,提出动态重定位方法,通过移动机器人进行多次重定位避免误匹配的情况。仿真实验结果表明:该方法与增强蒙特卡罗定位(augmented Monte Carlo localization,AMCL)算法进行了对比,定位用时降低了8.2s,定位成功率提升了43.4%,证明了该算法具有更好的重定位效果。
基金Supported by the National Natural Science Foundation of China(No.51474217,41501562)the Open Fund Program of Henan Engineering Laboratory of Pollution Control and Coal Chemical Resources Comprehensive Utilization(No.502002-B07,502002-A04)
文摘In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rapid detection for surface thermal deformation. Firstly,the basic principle of the ICP algorithm for registration of a free surface is given,and the shortcomings of the ICP algorithm in the registration of surface are analysed,such as its complex computation,long calculation time,low efficiency,and relatively strict initial registration position. Then an improved FICP algorithm based on design coordinate guidance is proposed. Finally,the FICP algorithm is applied to the fast registration test for the surface thermal deformation of a paraboloid antenna. Results indicate that the approach offers better performance with regard to fast surface registration and the algorithm is more simple,efficient,and easily realized in practical engineering application.
基金the National Natural Science Foundation of China (59990470) and the NationalOutstanding Young Scientist Foundation of China (
文摘For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with point-normal method, further refinement is achieved by using an improved iterative closest point (ICP) algorithm. Compared with other methods used for mult-view registration, this approach is automatic because no geometric feature, such as line, plane or sphere needs to be extracted from the original point cloud manually. A good initial alignment can be acquired automatically and the registration accuracy and efficiency is proven better than the normal point-point ICP algorithm both experimentally and theoretically.