Ce^3+/Er^3+/Bi^3+ triply-doped yttrium aluminum garnet (YAG) is synthesized using co-precipitation method. The Bi^3+ concentration-dependent near-infrared (NIR) emission behavior is systemically in- vestigated...Ce^3+/Er^3+/Bi^3+ triply-doped yttrium aluminum garnet (YAG) is synthesized using co-precipitation method. The Bi^3+ concentration-dependent near-infrared (NIR) emission behavior is systemically in- vestigated. The NIR emission of Er^3+ ions at 1531 nm is enhanced threefold by the addition of 7 mol% Bi^3+. Bi^3+doping results in the formation of exciton in YAG and the variation in the local environment of the doped rare-earth ions. The enhancement in NIR luminescence is ascribed to the combined effects of the sensitization of exciton→Ce^3+ →Er^3+ and the Bi^3+ doping-induced adjustment of the local environment for Ce^3+ and Er^3+ ions.展开更多
Identification of lymph nodes(LNs)is critical for studies of the structure,the role in disease development,and the efficacy of disease treatment.Carbonized polymer dots(CPDs)are expected to be potential LNs-targeted i...Identification of lymph nodes(LNs)is critical for studies of the structure,the role in disease development,and the efficacy of disease treatment.Carbonized polymer dots(CPDs)are expected to be potential LNs-targeted imaging agents due to their excellent properties with special structure,better photoluminescence(PL)and great biocompatibility.Herein,a red/near infrared(NIR)emission CPDs(RCPDs)with one and two-photon bioimaging based on citric acid(CA)and benzoylurea(BU)are prepared.Notably,the RCPDs are capable of targeting LNs for imaging.Lymphocyte homing has been demonstrated to be the cellular mechanism of RCPDs target LNs imaging.This work has developed a new nanomaterial for targeted imaging of LNs,while the biological applications of CPDs have been expanded and deepened.展开更多
Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, th...Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.展开更多
Since the elucidation that sugar-lectin interactions contribute to the understanding of ‘‘Glycomics' ', how to construct glycosensors with rapid response, excellent sensitivity and selectivity is of intense ...Since the elucidation that sugar-lectin interactions contribute to the understanding of ‘‘Glycomics' ', how to construct glycosensors with rapid response, excellent sensitivity and selectivity is of intense research interest. Herein, we report the design of three NIR emissive glyco-probes based on diketopyrrolopyrrole(DPPs) conjugated with two(DPPG), four(DPPF-G) and six(DPPS-G) galactose groups. All three molecules could probe lectins with excellent sensitivity and selectivity. The increase of glyco-DPP emission in NIR region upon interaction with lectin is due to the aggregates formation induced by sugar-lectin interactions, which have been verified by dynamic light scattering(DLS) and scanning electronic microscope(SEM) analysis.Due to the multiple glyco-ligands on DPPS-G, it has been successfully used to stain Hep G2 cells through interactions between galactose and asialogly-coprotein(ASGP-R), which are overexpressed on the surface of Hep G2 cells.展开更多
The aggregation-induced emission(AIE) phenomenon provides a new direction for the development of organic light-emitting devices. Here, we present a new class of emitters based on 4,4-difluoro-4-bora-3 a,4 a-diaza-s-in...The aggregation-induced emission(AIE) phenomenon provides a new direction for the development of organic light-emitting devices. Here, we present a new class of emitters based on 4,4-difluoro-4-bora-3 a,4 a-diaza-s-indacene(BODIPY), functionalized at different positions with tetraphenylethylene(TPE), which is one of the most famous AIE luminogens. Thanks to this modification, we were able to tune the photoluminescence of the BODIPY moiety from the green to the near-infrared(NIR)spectral range and achieve PL efficiencies of ~50% in the solid state. Remarkably, we observed an enhancement of the AIE and up to ~100% photoluminescence efficiencies by blending the TPE-substituted BODIPY fluorophores with a poly[(9,9-di-noctylfluorene-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,7-diyl)](F8 BT) matrix. By incorporating these blends in organic lightemitting diodes(OLEDs), we obtained electroluminescence peaked in the range 650–700 nm with up to 1.8% external quantum efficiency and ~2 m W/cm2 radiance, a remarkable result for red/NIR emitting and solution-processed OLEDs.展开更多
Yb^(3+)-doped phosphors have characteristic near-infrared(NIR)emissions,but their applications in phosphor-converted light-emitting-diodes(pc-LEDs)and Si solar cells are limited due to their mismatching excitation spe...Yb^(3+)-doped phosphors have characteristic near-infrared(NIR)emissions,but their applications in phosphor-converted light-emitting-diodes(pc-LEDs)and Si solar cells are limited due to their mismatching excitation spectra.Here,we selected nitride La3 Si6 N11(LSN)as host material to achieve Yb^(3+)NIR emission upon low-energy charge transfer(CT)excitation.The obtained phosphor LSN:Yb^(3+)has a broad CT excitation band ranging from 250 to 500 nm and narrowband NIR emissions ranging from 950 to 1100 nm centered at 983 nm.On the basis of spectral data,the vacuum referred binding energies(VRBE)schemes are constructed to locate energy levels of all lanthanide ions in LSN.We also fabricated NIR pc-LED device using 395 nm LED chip to demonstrate the potential applications of LSN:Yb^(3+)phosphors.展开更多
Broadband near-infrared(NIR)light sources play a critical role in widespread applications such as advanced spectroscopy analysis and nondestructive testing.One of the most promising techniques is the fabrication of br...Broadband near-infrared(NIR)light sources play a critical role in widespread applications such as advanced spectroscopy analysis and nondestructive testing.One of the most promising techniques is the fabrication of broadband NIR phosphor-converted light emitting diode(pc-LED).However,the purposeful design of a tunable ultra-broadband NIR-emitting phosphor in a single host is still a challenge.In this work,Ga_(2)GeO_(5) with two sites of six-coordinated[Ga1O_(6)]and five-coordinated[Ga2O_(5)]is chosen to host Cr^(3+),successfully producing tunable broadband NIR luminescence(680-1350 nm).It can be tuned largely from 828 to 970 nm with the full-width at half maximum(FWHM)varied from 208 to 258 nm just by simply adjusting the Cr^(3+)-doping content.The tailoring of the Cr^(3+)NIR spectral emission is ascertained to the site occupation preference and competition.The encapsulation of a prototype of NIR pc-LED with an output power of 29.5mW@390 mA is conducted for the implementation of night-vision application.This work provides a novel broadband NIR phosphor by Cr^(3+)-doping in both the sixand five-coordination field,meanwhile,further demonstrating the feasibility of discovering new host material with more than one crystallographic site for Cr^(3+)to trigger tunable broadband NIR emission.展开更多
Organic conjugated materials combining high conductivity with strong solid-state emission are highly desired for organic electronic applications,yet still rather rare.Herein,a novel luminogen(TEN)comprised by linking ...Organic conjugated materials combining high conductivity with strong solid-state emission are highly desired for organic electronic applications,yet still rather rare.Herein,a novel luminogen(TEN)comprised by linking naphthalene diimides and triphenyl ethylene with vinyl bridges is reported.TEN exhibits aggregation-induced emission(AIE)behavior of a strong nearinfrared fluorescence over 700 nm and the efficiency above 60.5%in the solid state,while also shows promising application in vivo bio-imaging with good permeability and extremely low background.Single crystal of TEN reveals intra-and intermolecular C–H…O hydrogen bonds,contributing to an inclined molecular stacking along the a-axis of the cell,creating a 1 D charge carrier transporting channel under a shortπ-πinteraction distance of 3.42?,which might benefit the solid emission and charge transport ability simultaneously.Solution processed bottom contact,top gate organic field effect transistors based on TEN reveal a high ambipolar charge transport ability with the hole mobility up to 0.13 cm2 V-1 s-1 and electron mobility up to0.010 cm2 V-1 s-1.Further atomic force microscopy and X-ray diffraction analysis on TEN thin film confirm the existence of the1 Dπ-πstacking channel,suggesting the stacking geometry revealed in crystal crucial for facilitating high charge carrier mobility while preserving the strong solid emission at the same time.展开更多
A series of vibratile π-extended dihydrophenazines(BPs)and a tetrahydrodiphenazine(TP)were synthesized via direct C-N coupling reactions.Structural alterations of the fused acene wings lead to diverse intermolecular ...A series of vibratile π-extended dihydrophenazines(BPs)and a tetrahydrodiphenazine(TP)were synthesized via direct C-N coupling reactions.Structural alterations of the fused acene wings lead to diverse intermolecular packing arrangements as well as tunable photophysical properties.These compounds exhibit intriguing features,including large Stokes shift,multiple emissions,and environmental effects.Notably,a dramatic hypsochromic shift in emission is observed when the acene wing is linearly extended from benzene to naphthalene and anthracene.This unusual π-conjugation length-dependent emission is explained by the close correlation between the calculated fluorescence-emitting energy and the π-conjugation length of the acene subunit.In addition,the TP bearing two flexible units exhibits dynamic photophysical properties resembling those of BPs.Our results reveal a balanced control over π-conjugation and luminescence in vibratile π-systems,thereby providing new insight into the molecular design of organic near-infrared fluorophores with large Stokes shifts and dynamic emissions.展开更多
The formation of amyloid plaques usually occurs in the early-stage of Alzheimer’s disease(AD).Stimulated emission depletion(STED)imaging provided a powerful tool for visualizing amyloid structures on the nanometer sc...The formation of amyloid plaques usually occurs in the early-stage of Alzheimer’s disease(AD).Stimulated emission depletion(STED)imaging provided a powerful tool for visualizing amyloid structures on the nanometer scale.However,many commercial probes adopted in detecting amyloid fibrils are inapplicable to STED imaging,owing to their unmatched absorption and emission wavelengths,small Stokes'shift,easy photo-bleaching,etc.Herein,we demonstrated a polarity-activated STED probe based on an intramolecular charge transfer donor(D)-7c-acceptor(A)compound.The electron-rich carbazole group and the electron-poor pyridinium bromide group,linked by 7i-conjugated thiophen-bridge,ensure strong near infrared(NIR)emission with a Stokes'shift larger than 200 nm.The tiny change in polarity before and after binding with amyloid plaques leads to a transition from weakly emission charge-transfer(CT)state(Φ<0.04)to highly emissive locally-excited(LE)state(Φ=0.57),giving rise to a fluorescence Turn-On probe.Together with large Stokes'shift,good photostability and high depletion efficiency,the super-resolution imaging of the formation and morphology of amyloid fibrils in vitro based on this probe was realized with a lateral spatial resolution better than 33 nm at an extremely low depletion power.Moreover,the ex-vivo super-resolution imaging of(E)-1-butyl-4(2-(5-(9-ethyl-9Hcarbazol-3-yl)thiophen-2-yl)vinyl)pyridinium bromide(CTPB)probe in Aβ plaques in the brain slices of a Tg mouse was demonstrated.This research provides a demonstration of the super resolution imaging probe of amyloid fibrils based on polarity-response mechanism,providing a new approach to the development of future amyloid probes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61233010 and 51372214)the Hunan Provincial Natural Science Foundation of China(No.12JJ3063)the Open Project of State Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Science(No.RERU2013017)
文摘Ce^3+/Er^3+/Bi^3+ triply-doped yttrium aluminum garnet (YAG) is synthesized using co-precipitation method. The Bi^3+ concentration-dependent near-infrared (NIR) emission behavior is systemically in- vestigated. The NIR emission of Er^3+ ions at 1531 nm is enhanced threefold by the addition of 7 mol% Bi^3+. Bi^3+doping results in the formation of exciton in YAG and the variation in the local environment of the doped rare-earth ions. The enhancement in NIR luminescence is ascribed to the combined effects of the sensitization of exciton→Ce^3+ →Er^3+ and the Bi^3+ doping-induced adjustment of the local environment for Ce^3+ and Er^3+ ions.
基金supported by National Natural Science Foundation of China(No.U21A20308)Sichuan Science and Technology Program(Nos.21ZDYF3218,2022ZYD0048)Talent Project of Sichuan Province,Sichuan Provincial College Student Innovation Training Program(Nos.S202010650073,S202210623049).
文摘Identification of lymph nodes(LNs)is critical for studies of the structure,the role in disease development,and the efficacy of disease treatment.Carbonized polymer dots(CPDs)are expected to be potential LNs-targeted imaging agents due to their excellent properties with special structure,better photoluminescence(PL)and great biocompatibility.Herein,a red/near infrared(NIR)emission CPDs(RCPDs)with one and two-photon bioimaging based on citric acid(CA)and benzoylurea(BU)are prepared.Notably,the RCPDs are capable of targeting LNs for imaging.Lymphocyte homing has been demonstrated to be the cellular mechanism of RCPDs target LNs imaging.This work has developed a new nanomaterial for targeted imaging of LNs,while the biological applications of CPDs have been expanded and deepened.
文摘Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.
基金supported by the National Natural Science Foundation of China (21772040, 21421004, 21372082, 21572062)the Fundamental Research Funds for the Central Universities (222201717003)+4 种基金the Programme of Introducing Talents of Discipline to Universities (B16017)a Visiting Program at NUS of China Scholarship Council (CSC)the Singapore Ministry of Education (R279-000-391-112)Singapore NRF Investigatorship (R279-000-444-281)the National University of Singapore (R279-000-482-133)
文摘Since the elucidation that sugar-lectin interactions contribute to the understanding of ‘‘Glycomics' ', how to construct glycosensors with rapid response, excellent sensitivity and selectivity is of intense research interest. Herein, we report the design of three NIR emissive glyco-probes based on diketopyrrolopyrrole(DPPs) conjugated with two(DPPG), four(DPPF-G) and six(DPPS-G) galactose groups. All three molecules could probe lectins with excellent sensitivity and selectivity. The increase of glyco-DPP emission in NIR region upon interaction with lectin is due to the aggregates formation induced by sugar-lectin interactions, which have been verified by dynamic light scattering(DLS) and scanning electronic microscope(SEM) analysis.Due to the multiple glyco-ligands on DPPS-G, it has been successfully used to stain Hep G2 cells through interactions between galactose and asialogly-coprotein(ASGP-R), which are overexpressed on the surface of Hep G2 cells.
基金supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) (607585)
文摘The aggregation-induced emission(AIE) phenomenon provides a new direction for the development of organic light-emitting devices. Here, we present a new class of emitters based on 4,4-difluoro-4-bora-3 a,4 a-diaza-s-indacene(BODIPY), functionalized at different positions with tetraphenylethylene(TPE), which is one of the most famous AIE luminogens. Thanks to this modification, we were able to tune the photoluminescence of the BODIPY moiety from the green to the near-infrared(NIR)spectral range and achieve PL efficiencies of ~50% in the solid state. Remarkably, we observed an enhancement of the AIE and up to ~100% photoluminescence efficiencies by blending the TPE-substituted BODIPY fluorophores with a poly[(9,9-di-noctylfluorene-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,7-diyl)](F8 BT) matrix. By incorporating these blends in organic lightemitting diodes(OLEDs), we obtained electroluminescence peaked in the range 650–700 nm with up to 1.8% external quantum efficiency and ~2 m W/cm2 radiance, a remarkable result for red/NIR emitting and solution-processed OLEDs.
基金Project supported by National Natural Science Foundation of China(51832005,51972020)。
文摘Yb^(3+)-doped phosphors have characteristic near-infrared(NIR)emissions,but their applications in phosphor-converted light-emitting-diodes(pc-LEDs)and Si solar cells are limited due to their mismatching excitation spectra.Here,we selected nitride La3 Si6 N11(LSN)as host material to achieve Yb^(3+)NIR emission upon low-energy charge transfer(CT)excitation.The obtained phosphor LSN:Yb^(3+)has a broad CT excitation band ranging from 250 to 500 nm and narrowband NIR emissions ranging from 950 to 1100 nm centered at 983 nm.On the basis of spectral data,the vacuum referred binding energies(VRBE)schemes are constructed to locate energy levels of all lanthanide ions in LSN.We also fabricated NIR pc-LED device using 395 nm LED chip to demonstrate the potential applications of LSN:Yb^(3+)phosphors.
基金financially supported by the National Natural Science Foundation of China (No.51802045)Guangzhou basic and applied basic research project (No.202102020871)。
文摘Broadband near-infrared(NIR)light sources play a critical role in widespread applications such as advanced spectroscopy analysis and nondestructive testing.One of the most promising techniques is the fabrication of broadband NIR phosphor-converted light emitting diode(pc-LED).However,the purposeful design of a tunable ultra-broadband NIR-emitting phosphor in a single host is still a challenge.In this work,Ga_(2)GeO_(5) with two sites of six-coordinated[Ga1O_(6)]and five-coordinated[Ga2O_(5)]is chosen to host Cr^(3+),successfully producing tunable broadband NIR luminescence(680-1350 nm).It can be tuned largely from 828 to 970 nm with the full-width at half maximum(FWHM)varied from 208 to 258 nm just by simply adjusting the Cr^(3+)-doping content.The tailoring of the Cr^(3+)NIR spectral emission is ascertained to the site occupation preference and competition.The encapsulation of a prototype of NIR pc-LED with an output power of 29.5mW@390 mA is conducted for the implementation of night-vision application.This work provides a novel broadband NIR phosphor by Cr^(3+)-doping in both the sixand five-coordination field,meanwhile,further demonstrating the feasibility of discovering new host material with more than one crystallographic site for Cr^(3+)to trigger tunable broadband NIR emission.
基金the China Scholarship Councilthe National Natural Science Foundation of China(21702016,21905015)+1 种基金the Chongqing Science and Technology Commission(cstc2018jcyj AX0091)the Fundamental Research Funds for the Central Universities(2019CDQYHG023)。
文摘Organic conjugated materials combining high conductivity with strong solid-state emission are highly desired for organic electronic applications,yet still rather rare.Herein,a novel luminogen(TEN)comprised by linking naphthalene diimides and triphenyl ethylene with vinyl bridges is reported.TEN exhibits aggregation-induced emission(AIE)behavior of a strong nearinfrared fluorescence over 700 nm and the efficiency above 60.5%in the solid state,while also shows promising application in vivo bio-imaging with good permeability and extremely low background.Single crystal of TEN reveals intra-and intermolecular C–H…O hydrogen bonds,contributing to an inclined molecular stacking along the a-axis of the cell,creating a 1 D charge carrier transporting channel under a shortπ-πinteraction distance of 3.42?,which might benefit the solid emission and charge transport ability simultaneously.Solution processed bottom contact,top gate organic field effect transistors based on TEN reveal a high ambipolar charge transport ability with the hole mobility up to 0.13 cm2 V-1 s-1 and electron mobility up to0.010 cm2 V-1 s-1.Further atomic force microscopy and X-ray diffraction analysis on TEN thin film confirm the existence of the1 Dπ-πstacking channel,suggesting the stacking geometry revealed in crystal crucial for facilitating high charge carrier mobility while preserving the strong solid emission at the same time.
基金financially supported by the National Natural Science Foundation of China(NSFC)(grant nos.21788102,22025503,21790361,and 21871084)Shanghai Municipal Science and Technology Major Project(grant no.2018SHZDZX03)+4 种基金the Fundamental Research Funds for the Central Universitiesthe Programme of Introducing Talents of Discipline to Universities(grant no.B16017)Program of Shanghai Academic/Technology Research Leader(grant no.19XD1421100)the Shanghai Science and Technology Committee(grant no.17520750100)the China Postdoctoral Science Foundation(grant no.2020M671018).
文摘A series of vibratile π-extended dihydrophenazines(BPs)and a tetrahydrodiphenazine(TP)were synthesized via direct C-N coupling reactions.Structural alterations of the fused acene wings lead to diverse intermolecular packing arrangements as well as tunable photophysical properties.These compounds exhibit intriguing features,including large Stokes shift,multiple emissions,and environmental effects.Notably,a dramatic hypsochromic shift in emission is observed when the acene wing is linearly extended from benzene to naphthalene and anthracene.This unusual π-conjugation length-dependent emission is explained by the close correlation between the calculated fluorescence-emitting energy and the π-conjugation length of the acene subunit.In addition,the TP bearing two flexible units exhibits dynamic photophysical properties resembling those of BPs.Our results reveal a balanced control over π-conjugation and luminescence in vibratile π-systems,thereby providing new insight into the molecular design of organic near-infrared fluorophores with large Stokes shifts and dynamic emissions.
基金This work was supported by the Ministry of Science and Technology of China(Nos.2017YFA0204503 and 2018YFA0704805)the National Natural Science Foundation of China(Nos.21503139,21573251,21673144,21873065,21833005,81970425 and 21790364)+5 种基金the Beijing Natural Science Foundation of China(No.2192011)the High-level Teachers in Bejing Municipal Universities in the Period of 13^th Five-year Plan(Nos.IDHT20180517 and CIT&TCD20180331)the Open Fund of the State Key Laboratory of Integrated Optoelectronics(No.IOSKL2019KF01)Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds(Nos.025185305000/210,009/19530050162 and 19530012018)Youth Innovative Research Team of Capital Normal University(No,009/19530050148)Beijing Advanced Innovation Center for Imaging Theory and Technology(No.009/19530011009).
文摘The formation of amyloid plaques usually occurs in the early-stage of Alzheimer’s disease(AD).Stimulated emission depletion(STED)imaging provided a powerful tool for visualizing amyloid structures on the nanometer scale.However,many commercial probes adopted in detecting amyloid fibrils are inapplicable to STED imaging,owing to their unmatched absorption and emission wavelengths,small Stokes'shift,easy photo-bleaching,etc.Herein,we demonstrated a polarity-activated STED probe based on an intramolecular charge transfer donor(D)-7c-acceptor(A)compound.The electron-rich carbazole group and the electron-poor pyridinium bromide group,linked by 7i-conjugated thiophen-bridge,ensure strong near infrared(NIR)emission with a Stokes'shift larger than 200 nm.The tiny change in polarity before and after binding with amyloid plaques leads to a transition from weakly emission charge-transfer(CT)state(Φ<0.04)to highly emissive locally-excited(LE)state(Φ=0.57),giving rise to a fluorescence Turn-On probe.Together with large Stokes'shift,good photostability and high depletion efficiency,the super-resolution imaging of the formation and morphology of amyloid fibrils in vitro based on this probe was realized with a lateral spatial resolution better than 33 nm at an extremely low depletion power.Moreover,the ex-vivo super-resolution imaging of(E)-1-butyl-4(2-(5-(9-ethyl-9Hcarbazol-3-yl)thiophen-2-yl)vinyl)pyridinium bromide(CTPB)probe in Aβ plaques in the brain slices of a Tg mouse was demonstrated.This research provides a demonstration of the super resolution imaging probe of amyloid fibrils based on polarity-response mechanism,providing a new approach to the development of future amyloid probes.