期刊文献+
共找到2,532篇文章
< 1 2 127 >
每页显示 20 50 100
NIR-II fluorescence imaging in liver tumor surgery: A narrative review 被引量:1
1
作者 Zihao Liu Lifeng Yan +1 位作者 Qingsong Hu Dalong Yin 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期29-44,共16页
In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpat... In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction. 展开更多
关键词 fluorescence guided-surgery liver cancer near infrared-II optical imaging
下载PDF
Initial Experience of NIR-II Fluorescence Imaging-Guided Surgery in Foot and Ankle Surgery
2
作者 Xiaoxiao Fan Jie Yang +8 位作者 Huwei Ni Qiming Xia Xiaolong Liu Tianxiang Wu Lin Li Paras N.Prasad Chao Liu Hui Lin Jun Qian 《Engineering》 SCIE EI CAS CSCD 2024年第9期19-27,共9页
Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence i... Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence imaging in foot and ankle surgeries.A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio(SBR)in NIR-II fluorescence images compared to NIR-I fluorescence images;our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons.Three types of clinical application scenarios(diabetic foot,calcaneal fracture,and lower extremity trauma)were included in this study.Using the NIR-II fluorescence imaging technique,we observed the ischemic region in the diabetic foot before morphological alterations,accurately determined the boundary of the ischemic region in the surgical incision,and fully assessed the blood supply condition of the flap.NIR-II fluorescence imaging can help surgeons precisely judge surgical margins,detect ischemic lesions early,and dynamically trace the perfusion process.We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery. 展开更多
关键词 Second near-infrared fluorescence imaging Foot and ankle surgery Indocyanine green imaging-guided surgery
下载PDF
In vivo real-time monitoring delayed administration of M2 macrophages to enhance healing of tendon by NIR-II fluorescence imaging
3
作者 Yuzhou Chen Mo Chen +16 位作者 Chengxuan Yu Huizhu Li Liman Sai Nguyen T.K.Thanh Yueming Wang Yan Wo Jian Zhang Xing Yang Evgenii L.Guryev Andrei V.Zvyagin Hao De Min Tang Shiyi Chen Yunxia Li Yuefeng Hao Sijia Feng Jun Chen 《Nano Research》 SCIE EI CSCD 2024年第5期4379-4390,共12页
The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophag... The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy.In this work,the second near-infrared(NIR-II)fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration.The delayed cell therapy(DCT)group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy(ICT)group.Both Keller-Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT.Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies. 展开更多
关键词 MACROPHAGE cell therapy nir-ii in vivo imaging delayed therapy tendon healing
原文传递
Self-confocal NIR-II fluorescence microscopy for multifunctional in vivo imaging
4
作者 Jing Zhou Tianxiang Wu +5 位作者 Runze Chen Liang Zhu Hequn Zhang Yifei Li Liying Chen Jun Qian 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期105-119,共15页
Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imagi... Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution.However,the traditional NIR-IIfluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal e±ciency,as well as di±cultly to adjust.Two types of upgraded NIR-IIfluorescence confocal microscopes,sharing the same pinhole by excitation and emission focus,leading to higher confocal e±ciency,are built in this work.One type is-ber-pinhole-based confocal microscope applicable to CW laser excitation.It is constructed forfluorescence intensity imaging with large depth,high stabilization and low cost,which could replace multiphotonfluorescence microscopy in some applications(e.g.,cerebrovascular and hepatocellular imaging).The other type is air-pinhole-based confocal microscope applicable to femtosecond(fs)laser excitation.It can be employed not only for NIR-IIfluorescence intensity imaging,but also for multi-channelfluorescence lifetime imaging to recognize different structures with similarfluorescence spectrum.Moreover,it can be facilely combined with multiphotonfluorescence microscopy.A single fs pulsed laser is utilized to achieve up-conversion(visible multiphotonfluorescence)and down-conversion(NIR-II one-photonfluorescence)excitation simultaneously,extending imaging spectral channels,and thus facilitates multi-structure and multi-functional observation. 展开更多
关键词 Self-confocal fiber-pinhole air-pinhole multi-channe fluorescence lifetime imaging multi-color imaging
下载PDF
Rational design of biodegradable semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photodynamic therapy
5
作者 Xuxuan Gu Jinlong Shen +5 位作者 Zhiwei Xu Wenqi Wang Ying Wu Wen Zhou Chen Xie Quli Fan 《Nano Research》 SCIE EI CSCD 2024年第6期5399-5408,共10页
Semiconducting polymer nanoparticles(SPNs)have shown great promise in second near-infrared window(NIR-II)phototheranostics.However,the issue of long metabolic time significantly restricts the clinical application of S... Semiconducting polymer nanoparticles(SPNs)have shown great promise in second near-infrared window(NIR-II)phototheranostics.However,the issue of long metabolic time significantly restricts the clinical application of SPNs.In this study,we rationally designed a biodegradable SPN(BSPN50)for NIR-II fluorescence imaging-guided photodynamic therapy(PDT).BSPN50 is prepared by encapsulating a biodegradable SP(BSP50)with an amphiphilic copolymer F-127.BSP50 is composed of NIR-II fluorescent diketopyrrolopyrrole(DPP)segment and degradable poly(phenylenevinylene)(PPV)segment with the ratio of 50/50.BSPN50 has both satisfactory degradability under myeloperoxidase(MPO)/hydrogen peroxide(H_(2)O_(2))and NIR-II fluorescence emission upon 808 nm laser excitation.Furthermore,BSPN50 shows good photodynamic efficacy under 808 nm laser irradiation.BSPN50 shows a faster degradation rate than BSPN100 which has no PPV segment both in vitro and in vivo.In addition,BSPN50 can effectively diagnose tumor via NIR-II fluorescence imaging and inhibit the tumor growth by PDT.Thus,our study provides a rational approach to construct biodegradable nanoplatforms for efficient tumor NIR-II phototheranostics. 展开更多
关键词 near-infrared(NIR)-II fluorescence imaging semiconducting polymer nanoparticles photodynamic therapy tumor imaging
原文传递
Efficacy of multi-color near-infrared fluorescence with indocyanine green:A new imaging strategy and its early experience in laparoscopic cholecystectomy
6
作者 Jia-Yi Li Lu Ping +4 位作者 Bo-Zheng Lin Zhi-Hong Wang Chi-Hua Fang Su-Rong Hua Xian-Lin Han 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第12期3703-3709,共7页
BACKGROUND Near-infrared fluorescence imaging via using intravenous indocyanine green(ICG)has a wide range of applications in multiple surgical scenarios.In lapa-roscopic cholecystectomy(LC),it facilitates intraoperat... BACKGROUND Near-infrared fluorescence imaging via using intravenous indocyanine green(ICG)has a wide range of applications in multiple surgical scenarios.In lapa-roscopic cholecystectomy(LC),it facilitates intraoperative identification of the biliary system and reduces the risk of bile duct injury.However,the usual single color fluorescence imaging(SCFI)has limitations in manifesting the fluorescence signal of the target structure when its intensity is relatively low.Moreover,sur-geons often experience visual fatigue.We hypothesized that a novel imaging stra-tegy,named multi-color fluorescence imaging(MCFI),could potentially address these issues by decreasing hepatic and background fluorescence pollution and improving biliary visualization.AIM To investigate the novel imaging strategy MCFI in LC.METHODS This was a single-center retrospective study conducted at Peking Union Medical College Hospital,Beijing,China.Patients who underwent LC from June 2022 to March 2023 by the same surgical team were enrolled.Demographic features,clinical and surgical information were collected.The clarity,visual comfort,and effectiveness of different imaging strategies were subjectively evaluated by surgeons.RESULTS A total of 155 patients were included,60 patients were in the non-ICG group in which only bright light illuminance without ICG was applied,60 patients were in the SCFI group,and 35 patients were in the MCFI group.No statist-ically significant differences were found in demographics or clinical history.Post-surgical complications were minimal in all 3 groups with no significant differences observed.MCFI improved the clarity of imaging and visual comfort.Clarity of imaging and visual comfort were improved with MCFI.CONCLUSION MCFI improves biliary visualization and reduces liver fluorescence contamination,which supports its routine use in LC.MCFI may also be a better choice than SCFI in other clinical settings. 展开更多
关键词 Indocyanine green Near-infrared fluorescence fluorescence imaging Multi-color fluorescence imaging Laparoscopic cholecystectomy
下载PDF
Pay attention to the application of indocyanine green fluorescence imaging technology in laparoscopic liver cancer resection
7
作者 Li-Min Kang Fu-Wei Zhang +1 位作者 Fa-Kun Yu Lei Xu 《World Journal of Clinical Cases》 SCIE 2024年第23期5288-5293,共6页
Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.... Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.This approach falls shortof meeting the demands for precise and anatomical liver resection.The introductionof fluorescence imaging technology,particularly indocyanine green,hasdemonstrated significant advantages in visualizing bile ducts,tumor localization,segment staining,microscopic lesion display,margin examination,and lymphnode visualization.This technology addresses the inherent limitations oftraditional laparoscopy,which lacks direct tactile feedback,and is increasinglybecoming the standard in laparoscopic procedures.Guided by fluorescenceimaging technology,laparoscopic liver cancer resection is poised to become thepredominant technique for liver tumor removal,enhancing the accuracy,safetyand efficiency of the procedure. 展开更多
关键词 Indocyanine green fluorescence imaging technology LAPAROSCOPY HEPATECTOMY Liver tumor
下载PDF
Application value of indocyanine green fluorescence imaging in guiding sentinel lymph node biopsy diagnosis of gastric cancer: Meta-analysis
8
作者 Qi-Jia Zhang Zhi-Cheng Cao +4 位作者 Qin Zhu Yu Sun Rong-Da Li Jin-Long Tong Qin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1883-1893,共11页
BACKGROUND Gastric cancer is a common malignant tumor of the digestive system worldwide,and its early diagnosis is crucial to improve the survival rate of patients.Indocyanine green fluorescence imaging(ICG-FI),as a n... BACKGROUND Gastric cancer is a common malignant tumor of the digestive system worldwide,and its early diagnosis is crucial to improve the survival rate of patients.Indocyanine green fluorescence imaging(ICG-FI),as a new imaging technology,has shown potential application prospects in oncology surgery.The meta-analysis to study the application value of ICG-FI in the diagnosis of gastric cancer sentinel lymph node biopsy is helpful to comprehensively evaluate the clinical effect of this technology and provide more reliable guidance for clinical practice.AIM To assess the diagnostic efficacy of optical imaging in conjunction with indocya-nine green(ICG)-guided sentinel lymph node(SLN)biopsy for gastric cancer.METHODS Electronic databases such as PubMed,Embase,Medline,Web of Science,and the Cochrane Library were searched for prospective diagnostic tests of optical imaging combined with ICG-guided SLN biopsy.Stata 12.0 software was used for analysis by combining the"bivariable mixed effect model"with the"midas"command.The true positive value,false positive value,false negative value,true negative value,and other information from the included literature were extracted.A literature quality assessment map was drawn to describe the overall quality of the included literature.A forest plot was used for heterogeneity analysis,and P<0.01 was considered to indicate statistical significance.A funnel plot was used to assess publication bias,and P<0.1 was considered to indicate statistical significance.The summary receiver operating characteristic(SROC)curve was used to calculate the area under the curve(AUC)to determine the diagnostic accuracy.If there was interstudy heterogeneity(I2>50%),meta-regression analysis and subgroup analysis were performed.analysis were performed.RESULTS Optical imaging involves two methods:Near-infrared(NIR)imaging and fluorescence imaging.A combination of optical imaging and ICG-guided SLN biopsy was useful for diagnosis.The positive likelihood ratio was 30.39(95%CI:0.92-1.00),the sensitivity was 0.95(95%CI:0.82-0.99),and the specificity was 1.00(95%CI:0.92-1.00).The negative likelihood ratio was 0.05(95%CI:0.01-0.20),the diagnostic odds ratio was 225.54(95%CI:88.81-572.77),and the SROC AUC was 1.00(95%CI:The crucial values were sensitivity=0.95(95%CI:0.82-0.99)and specificity=1.00(95%CI:0.92-1.00).The Deeks method revealed that the"diagnostic odds ratio"funnel plot of SLN biopsy for gastric cancer was significantly asymmetrical(P=0.01),suggesting significant publication bias.Further meta-subgroup analysis revealed that,compared with fluorescence imaging,NIR imaging had greater sensitivity(0.98 vs 0.73).Compared with optical imaging immediately after ICG injection,optical imaging after 20 minutes obtained greater sensitivity(0.98 vs 0.70).Compared with that of patients with an average SLN detection number<4,the sensitivity of patients with a SLN detection number≥4 was greater(0.96 vs 0.68).Compared with hematoxylin-eosin(HE)staining,immunohistochemical(+HE)staining showed greater sensitivity(0.99 vs 0.84).Compared with subserous injection of ICG,submucosal injection achieved greater sensitivity(0.98 vs 0.40).Compared with 5 g/L ICG,0.5 and 0.05 g/L ICG had greater sensitivity(0.98 vs 0.83),and cT1 stage had greater sensitivity(0.96 vs 0.72)than cT2 to cT3 clinical stage.Compared with that of patients≤26,the sensitivity of patients>26 was greater(0.96 vs 0.65).Compared with the literature published before 2010,the sensitivity of the literature published after 2010 was greater(0.97 vs 0.81),and the differences were statistically significant(all P<0.05).CONCLUSION For the diagnosis of stomach cancer,optical imaging in conjunction with ICG-guided SLN biopsy is a therapeut-ically viable approach,especially for early gastric cancer.The concentration of ICG used in the SLN biopsy of gastric cancer may be too high.Moreover,NIR imaging is better than fluorescence imaging and may obtain higher sensitivity. 展开更多
关键词 Gastric neoplasms Sentinel lymph nodes Near infrared imaging fluorescence imaging Indocyanine green META-ANALYSIS
下载PDF
Near-Infrared Fluorescence Imaging Contrast Agents for Clinical Research: Limitations and Alternatives
9
作者 Serigne Moussa Badiane Elhadji A. L. Bathily +1 位作者 Fawrou Seye Louis A.D. Diouf 《Open Journal of Biophysics》 2024年第1期73-77,共5页
Introduction: Near-infrared fluorescence imaging is a technique that will establish itself in the short term at the international level because it is recognized for its potential to improve the performance of surgical... Introduction: Near-infrared fluorescence imaging is a technique that will establish itself in the short term at the international level because it is recognized for its potential to improve the performance of surgical interventions, its moderate investment and operating costs and its portability. Although the technology is now mature, there is currently the problem of the availability of contrast agents to be injected IV. The aim of this methodology article is to propose an alternative solution to the need for contrast agents for clinical research, particularly in oncology. Methodology: They consist of coupling a fluorescent marker in the form of an NHS derivative, such as IR DYE manufactured in compliance with GMP, with therapeutic monoclonal antibodies having marketing authorization for molecular imaging. For a given antibody, the marking procedure must be the subject of a validation file on the final preparation filtered on a sterilizing membrane at 0.22 μm. Once the procedure has been validated, it would be unnecessary to repeat the tests before each clinical research examination. A check of the marking by thin-layer chromatography (TLC) and place it in a sample bank at +4˚C for 1 month of each injected formulation would be sufficient for additional tests if necessary. Conclusion: Molecular near-infrared fluorescence imaging is experiencing development, the process of which could be accelerated by greater availability of clinical contrast agents. Alternative solutions are therefore necessary to promote clinical research in this area. These methods must be shared to make it easier for researchers. 展开更多
关键词 fluorescence imaging Contrast Agents Clinical Research
下载PDF
Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging 被引量:3
10
作者 Mo Chen Sijia Feng +4 位作者 Yimeng Yang Yunxia Li Jian Zhang Shiyi Chen Jun Chen 《Nano Research》 SCIE EI CAS CSCD 2020年第11期3123-3129,共7页
The in vivo spatio-temporal patterns of neovascularization are still poorly understood because it is limited to multi-scale techniques from the cellular level to living animal level.Owing to deep tissue-penetration an... The in vivo spatio-temporal patterns of neovascularization are still poorly understood because it is limited to multi-scale techniques from the cellular level to living animal level.Owing to deep tissue-penetration and zero autofluorescence background,the second near-infrared(NIR-II,1,000–1,700 nm)fluorescence imaging recently shows promise in breaking through this dilemma by dynamically tracking the pathophysiological process of neovascularization in vivo.Here,NIR-II fluorescence imaging was recruited for monitoring blood vessels in order to visualize the vascular injury and quantitively assess neovascularization in mouse models of acute skeleton muscle contusion and hindlimb ischemia.The temporal analysis of real-time NIR-II fluorescence intensity demonstrated that the blood flow perfusion of ischemia area was able to rapidly restore to 96%of pre-ischemic state within one week.Moreover,the spatial analysis revealed that the lower and outer quadrants of ischemia area in the mouse model of hindlimb ischemia always had relatively high blood flow perfusion compared with other quadrants during three weeks post-ischemia,and even exceeded pre-ischemic quantity at 21 days post-ischemia.In conclusion,this in vivo imaging technique has significant potential utility for studying the spatio-temporal patterns of neovascularization in vivo. 展开更多
关键词 BIOimaging second near-infrared(nir-ii)fluorescence NANOPROBES SPATIO-TEMPORAL NEOVASCULARIZATION
原文传递
Repurposing organic semiconducting nanomaterials to accelerate clinical translation of NIR-II fluorescence imaging
11
作者 Xiaoming Hu Fengwei Sun +2 位作者 Caijun Zhu Zhen Yang Wei Huang 《Nano Research》 SCIE EI CSCD 2023年第4期5140-5154,共15页
Optical imaging possesses important implications for early disease diagnosis,timely disease treatment,and basic medical as well as biological research.Compared with the traditionary near-infrared(NIR-I)window(650-950 ... Optical imaging possesses important implications for early disease diagnosis,timely disease treatment,and basic medical as well as biological research.Compared with the traditionary near-infrared(NIR-I)window(650-950 nm)optical imaging,the emerging second near-infrared(NIR-II)window optical imaging technology owns the great superiorities of non-invasiveness,nonionizing radiation,and real-time dynamic imaging with the low biological interference,can significantly improve the tissue penetration depth and detection sensitivity,thus expecting to achieve accurate and precise diagnosis of major diseases.Inspired by the conspicuous superiorities,an increasing number of versatile NIR-II fluorophores have been legitimately designed and engineered for precisely deep-tissue mapping-mediated theranostics of life-threatening diseases.Organic semiconducting nanomaterials(OSNs)are derived from organic conjugated molecules withπ-electron delocalized skeletons,which show greatly preponderant prospects in the biomedicine field due to the excellent photoelectric property,tunable energy bands,and fine biocompatibility.In this review,the superiorities of NIR-II fluorescence imaging using OSNs for brilliant visualization various of diseases,including tongue cancer,ovarian cancer,osteosarcoma,bacteria or pathogens infection,kidney dysfunction,rheumatoid arthritis,liver injury,and cerebrovascular function,are emphatically summarized.Finally,the reasonable prospects and persistent efforts for repurposing OSNs to facilitate the clinical translation of NIR-II fluorescence phototheranostics are outlined. 展开更多
关键词 organic semiconducting nanomaterials second near-infrared(nir-ii)fluorescence imaging malignant tumor organic injury infections
原文传递
Fluorescence molecular imaging system and fusion algorithm based on 2CCD camera
12
作者 王玉 王明泉 +1 位作者 杨晓峰 王艳翔 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期161-164,共4页
Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing sect... Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing section.This system studied the 2charge-coupled device(CCD)camera(AD-080CL)of the JAI company.Fusion algorithm of visible light and near infrared images was designed for the fluorescence imaging system with wavelet transform image fusion algorithm.In order to enhance the fluorescent moiety of the fusion image,the luminance value of the green component of the color image was changed.And using microsoft foundation classes(MFC)application architecture,the supporting software system was bulit in VS2010 environment. 展开更多
关键词 fluorescence imaging system image fusion wavelet transform microsoft foundation classes(MFC)
下载PDF
Response of Ficus microcarpa L.Foliage to Water Stress Determined by Chlorophyll Fluorescence Imaging Technique
13
作者 林淑玲 陈华 +3 位作者 董蕾 曹洪麟 陈贻竹 顾群 《Agricultural Science & Technology》 CAS 2012年第4期739-745,共7页
[Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of d... [Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of detached leaves from Ficus microcarpa, Ficus benjamina and Nerium oleander to PEG-6000 simulated water stress were detected, and the chlorophyll fluorescence imaging technique was used to detect and analyze the stress at different spots of a single leaf simultaneously. [Result] The responses of Ficus microcarpa, Ficus benjamina and Nerium oleander to dehydration showed that: ~1~) the maximal photochemical efficiency (Fv/Fm) and non- photo-chemical quenching (NPQ) values were small in the reaction center among different detected spots of leaves, and there were great differences between relative electron transport rate (ETR), photochemical quenching (qP) and quantum efficiency of PSII photochemistry ((φPSII); (2) the differences of these parameters were more ob- vious among different spots of water-stressed leaves; (3) the discrete degrees of the species with strong resitances decreased significantly. [Conclusion] This study lays the foundation for the further research on the response of plants to drought stress using chlorophyll fluorescence imaging technique. 展开更多
关键词 Ficus microcarpa Water stress Chlorophyll a fluorescence imaging
下载PDF
CA IX-targeted Ag_(2)S quantum dots bioprobe for NIR-II imaging-guided hypoxia tumor chemo-photothermal therapy
14
作者 Xinyue Cui Zhuang Hu +3 位作者 Ruihan Li Peng Jiang Yongchang Wei Zilin Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第6期878-888,共11页
Hypoxia is the common characteristic of almost all solid tumors,which prevents therapeutic drugs from reaching the tumors.Therefore,the development of new targeted agents for the accurate diagnosis of hypoxia tumors i... Hypoxia is the common characteristic of almost all solid tumors,which prevents therapeutic drugs from reaching the tumors.Therefore,the development of new targeted agents for the accurate diagnosis of hypoxia tumors is widely concerned.As carbonic anhydrase IX(CA IX)is abundantly distributed on the hypoxia tumor cells,it is considered as a potential tumor biomarker.4-(2-Aminoethyl)benzenesulfonamide(ABS)as a CA IX inhibitor has inherent inhibitory activity and good targeting effect.In this study,Ag_(2)S quantum dots(QDs)were used as the carrier to prepare a novel diagnostic and therapeutic bioprobe(Ag_(2)S@polyethylene glycol(PEG)-ABS)through ligand exchange and amide condensation reaction.Ag_(2)S@PEG-ABS can selectively target tumors by surface-modified ABS and achieve accurate tumor imaging by the near infrared-II(NIR-II)fluorescence characteristics of Ag_(2)S QDs.PEG modification of Ag_(2)S QDs greatly improves its water solubility and stability,and therefore achieves high photothermal stability and high photothermal conversion efficiency(PCE)of 45.17%.Under laser irradiation,Ag_(2)S@PEG-ABS has powerful photothermal and inherent antitumor combinations on colon cancer cells(CT-26)in vitro.It also has been proved that Ag_(2)S@PEG-ABS can realize the effective treatment of hypoxia tumors in vivo and show good biocompatibility.Therefore,it is a new efficient integrated platform for the diagnosis and treatment of hypoxia tumors. 展开更多
关键词 CA IX-targeted Hypoxia tumor combination therapy nir-ii imaging Photothermal effect
下载PDF
Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis
15
作者 Pan Luo Fu-Qiang Gao +5 位作者 Wei Sun Jun-You Li Cheng Wang Qing-Yu Zhang Zhi-Zhuo Li Peng Xu 《Military Medical Research》 SCIE CAS CSCD 2024年第2期287-307,共21页
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec... Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies. 展开更多
关键词 Rheumatoid arthritis fluorescent probe imaging DIAGNOSIS BIOMARKER
下载PDF
indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery:State of the art and future directions 被引量:26
16
作者 Gian Luca Baiocchi Michele Diana Luigi Boni 《World Journal of Gastroenterology》 SCIE CAS 2018年第27期2921-2930,共10页
In recent years, the use of fluorescence-guided surgery(FGS) to treat benign and malignant visceral, hepatobiliary and pancreatic neoplasms has significantly increased. FGS relies on the fluorescence signal emitted by... In recent years, the use of fluorescence-guided surgery(FGS) to treat benign and malignant visceral, hepatobiliary and pancreatic neoplasms has significantly increased. FGS relies on the fluorescence signal emitted by injected substances(fluorophores) after being illuminated by ad hoc laser sources to help guide the surgical procedure and provide the surgeon with real-time visualization of the fluorescent structures of interest that would be otherwise invisible. This review surveys and discusses the most common and emerging clinical applications of indocyanine green(ICG)-based fluorescence in visceral, hepatobiliary and pancreatic surgery. The analysis, findings, and discussion presented here rely on the authors' significant experience with this technique in their medical institutions, an up-to-date review of the most relevant articles published on this topic between 2014 and 2018, and lengthy discussions with key opinion leaders in the field during recent conferences and congresses. For each application, the benefits and limitations of this technique, as well as applicable future directions, are described. The imaging of fluorescence emitted by ICG is a simple, fast,relatively inexpensive, and harmless tool with numerous different applications in surgery for both neoplasms and benign pathologies of the visceral and hepatobiliary systems. The ever-increasing availability of visual systems that can utilize this tool will transform some of these applications into the standard of care in the near future. Further studies are needed to evaluate the strengths and weaknesses of each application of ICG-based fluorescence imaging in abdominal surgery. 展开更多
关键词 indocyanine green fluorescence imaging gastrointestinal SURGERY liver SURGERY BILIARY SURGERY pancreatic SURGERY VISCERAL perfusion BILIARY anatomy peritoneal CARCINOMATOSIS
下载PDF
Evaluation of COC183B2 antibody targeting ovarian cancer by near-infrared fluorescence imaging 被引量:4
17
作者 Chen Zhang Xinyu Ling +10 位作者 Yanxiu Guo Cunzhong Yuan Hongyan Cheng Xue Ye Ruiqiong Ma Yinli Zhang Yi Li Xiaohong Chang Beihua Kong Tao Liu Heng Cui 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2019年第4期673-685,共13页
Objective: To evaluate the imaging potential of a novel near-infrared(NIR) probe conjugated to COC183 B2 monoclonal antibodies(MAb) in ovarian cancer(OC).Methods: The expression of OC183 B2 antigen in OC was determine... Objective: To evaluate the imaging potential of a novel near-infrared(NIR) probe conjugated to COC183 B2 monoclonal antibodies(MAb) in ovarian cancer(OC).Methods: The expression of OC183 B2 antigen in OC was determined by immunohistochemical(IHC) staining using tissue microarrays with the H-score system and immunofluorescence(IF) staining of tumor cell lines.Imaging probes with the NIR fluorescent dye cyanine 7(Cy7) conjugated to COC183 B2 Mab were chemically engineered. OC183 B2-positive human OC cells(SKOV3-Luc) were injected subcutaneously into BALB/c nude mice. Bioluminescent imaging(BLI) was performed to detect tumor location and growth. COC183 B2-Cy7 at 1.1,3.3, 10, or 30 μg were used for in vivo fluorescence imaging, and phosphate-buffered saline(PBS), free Cy7 dye and mouse isotype immunoglobulin G(IgG)-Cy7(delivered at the same doses as COC183 B2-Cy7) were used as controls.Results: The expression of OC183 B2 with a high H-score was more prevalent in OC tissue than fallopian tube(FT) tissue. Among 417 OC patients, the expression of OC183 B2 was significantly correlated with the histological subtype, histological grade, residual tumor size, relapse state and survival status. IF staining demonstrated that COC183 B2 specifically expressed in SKOV3 cells but not HeLa cells. In vivo NIR fluorescence imaging indicated that COC183 B2-Cy7 was mainly distributed in the xenograft and liver with optimal tumor-to-background(T/B)ratios in the xenograft at 30 μg dose. The highest fluorescent signals in the tumor were observed at 96 h postinjection(hpi). Ex vivo fluorescence imaging revealed the fluorescent signals mainly from the tumor and liver. IHC analysis confirmed that xenografts were OC183 B2 positive.Conclusions: COC183 B2 is a good candidate for NIR fluorescence imaging and imaging-guided surgery in OC. 展开更多
关键词 COC183B2 ANTIBODY NEAR-INFRARED fluorescence imaging OVARIAN CANCER
下载PDF
Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings (Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium 被引量:3
18
作者 ZHAO-Li-juan XIE Jing-fang +3 位作者 ZHANG Hong WANG Zhen-tao JIANG Hong-jin GAO Shao-long 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期826-836,共11页
The aim of this research was to study the influence of chlorsulfuron residue and cadmium on the enzymatic activity and photosynthetic apparatus of maize(Zea mays L.) plants. Chlorsulfuron and cadmium at 0.001 and 5.0 ... The aim of this research was to study the influence of chlorsulfuron residue and cadmium on the enzymatic activity and photosynthetic apparatus of maize(Zea mays L.) plants. Chlorsulfuron and cadmium at 0.001 and 5.0 mg kg–1, respectively, were mixed and applied to soil prior to planting. The levels of chlorsulfuron-and cadmium-induced stress to plants were estimated by growth, chlorophyll content, lipid peroxide content, enzyme activities, and major fluorescence parameters of chlorophyll(revealed by the fluorescence imaging system Fluor Cam). Chlorsulfuron negatively affected the chlorophyll content, photochemical efficiency of photosystem II in the dark-adapted state, the maximum efficiency of photosystem II, photochemical quenching coefficient, and steady-state fluorescence decline ratio in the leaves of maize seedlings. However, cadmium did not produce noticeable changes. Plants that were exposed to both chlorsulfuron and cadmium showed an obvious increase in the steady-state fluorescence decline ratio. These results implied that the seedlings possessed more resistance to cadmium than to chlorsulfuron and their resistance to chlorsulfuron toxicity was enhanced by the presence of cadmium. The results also suggested that chlorophyll fluorescence imaging reveals overall alterations within the leaves but may not reflect small-scale effects on tissues, as numeric values of specific parameters are averages of the data collected from the whole leaf. 展开更多
关键词 major parameters of Chl fluorescence imaging GERMINATION GROWTH METALS sulfonylurea herbicides
下载PDF
Intraoperative use of indocyanine green fluorescence imaging in rectal cancer surgery: The state of the art 被引量:6
19
作者 Roberto Peltrini Mauro Podda +9 位作者 Simone Castiglioni Maria Michela Di Nuzzo Michele D'Ambra Ruggero Lionetti Maurizio Sodo Gaetano Luglio Felice Mucilli Salomone Di Saverio Umberto Bracale Francesco Corcione 《World Journal of Gastroenterology》 SCIE CAS 2021年第38期6374-6386,共13页
Indocyanine green(ICG)fluorescence imaging is widely used in abdominal surgery.The implementation of minimally invasive rectal surgery using new methods like robotics or a transanal approach required improvement of op... Indocyanine green(ICG)fluorescence imaging is widely used in abdominal surgery.The implementation of minimally invasive rectal surgery using new methods like robotics or a transanal approach required improvement of optical systems.In that setting,ICG fluorescence optimizes intraoperative vision of anatomical structures by improving blood and lymphatic flow.The purpose of this review was to summarize all potential applications of this upcoming technology in rectal cancer surgery.Each type of use has been separately addressed and the evidence was investigated.During rectal resection,ICG fluorescence angiography is mainly used to evaluate the perfusion of the colonic stump in order to reduce the risk of anastomotic leaks.In addition,ICG fluorescence imaging allows easy visualization of organs such as the ureter or urethra to protect them from injury.This intraoperative technology is a valuable tool for conducting lymph node dissection along the iliac lymphatic chain or to better identifying the rectal dissection planes when a transanal approach is performed.This is an overview of the applications of ICG fluorescence imaging in current surgical practice and a synthesis of the results obtained from the literature.Although further studies are need to investigate the real clinical benefits,these findings may enhance use of ICG fluorescence in current clinical practice and stimulate future research on new applications. 展开更多
关键词 Indocyanine green fluorescence imaging Near infrared Rectal cancer Total mesorectal excision Anastomotic leakage
下载PDF
Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes 被引量:3
20
作者 Svitlana MLevchenko Artem Pliss Junle Qu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第1期13-21,共9页
Fluorescence litime imaging(FLIM)is an effective noninvasive bioanalytical tol based onmeasuring fuorescent lifetime of fuorophores.A growing number of FLIM studies utilizes ge-netically engineered fluorescent protein... Fluorescence litime imaging(FLIM)is an effective noninvasive bioanalytical tol based onmeasuring fuorescent lifetime of fuorophores.A growing number of FLIM studies utilizes ge-netically engineered fluorescent proteins targeted to specific subcellular structures to probe localmolecular environment,which opens new directions in cell science.This paper highlights theunconventional applications of FLIM for studies of molecular processes in diverse organelles oflive cultured cells. 展开更多
关键词 fluorescence lifetime imaging fluorescent proteins BIOimaging intracellular procescs
下载PDF
上一页 1 2 127 下一页 到第
使用帮助 返回顶部