We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-mo...We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-monotonic behavior was observed in all these quantities around the phase transition boundary,which also revealed the properties of the critical point.Further,this study indicated that the chiral phase transition boundary and critical point could vary depending on the scalarvector coupling constant G_(SV).At finite densities and temperatures,the negative G_(SV)term exhibited attractive interactions,which enhanced the critical point temperature and reduced the chemical potential.The G_(SV)term also affected the properties of the high-order susceptibilities,speed of sound,and polytropic index near the critical point.The non-monotonic(peak or dip)structures of these quantities shifted to a low baryon chemical potential(and high temperature)with a negative G_(SV).G_(SV)also changed the amplitude and range of the nonmonotonic regions.Therefore,the scalar-vector interaction was useful for locating the phase boundary and critical point in QCD phase diagram by comparing the experimental data.The study of the non-monotonic behavior of high-order susceptibilities,speed of sound,and polytropic index is of great interest,and further observations related to high-order susceptibilities,speed of sound,and polytropic index being found and applied to the search for critical points in heavy-ion collisions and the study of compact stars are eagerly awaited.展开更多
With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To ...With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To calculate the transport coefficients we utilized the kinetic theory in the relaxation time approximation, where the momentum anisotropy is embedded in the estimation of both the distribution function and relaxation time. It was shown that an increase in the anisotropy parameterξmay result in a catalysis of chiral symmetry breaking. The critical endpoint(CEP) is shifted to lower temperatures and larger quark chemical potentials asξincreases, and the impact of momentum anisotropy on the CEP temperature is almost the same as that on the quark chemical potential of the CEP. The meson masses and the associated decay widths also exhibit a significant ξ dependence. It was observed that the temperature behavior of the scaled shear viscosity η/T~3 and scaled electrical conductivity σ/T exhibited a similar dip structure, with the minima of both η/T~3 and σ/T shifting toward higher temperatures with increasing ξ. Furthermore,we demonstrated that the Seebeck coefficient S decreases when the temperature rises and its sign is positive, indicating that the dominant carriers for converting the temperature gradient to the electric field are up-quarks. The Seebeck coefficient S is significantly enhanced with a largeξfor a temperature below the critical temperature.展开更多
We investigate nucleon mass splitting at finite isospin chemical potential in the frame of the two-flavour Nambu-Jona-Lasinio model. It is analytically proven that in the phase with explicit isospin symmetry breaking,...We investigate nucleon mass splitting at finite isospin chemical potential in the frame of the two-flavour Nambu-Jona-Lasinio model. It is analytically proven that in the phase with explicit isospin symmetry breaking, the proton mass decreases and the neutron mass increases linearly in the isospin chemical potential.展开更多
We derive the scalar resonance coupling constants of resonance chiral theory from the extended Nambu Jona-Lasinio model by using heat-kernel expansion.
We report our recent progress on the QCD phase structure.We explore the properties of quark–gluon matter in the improved Polyakov–Nambu–Jona–Lasinio(PNJL)model by introducing a chemical potential-dependent Polyako...We report our recent progress on the QCD phase structure.We explore the properties of quark–gluon matter in the improved Polyakov–Nambu–Jona–Lasinio(PNJL)model by introducing a chemical potential-dependent Polyakov loop potential.This treatment effectively reflects the quantum backreaction of matter sector to glue sector at nonzero chemical potential.Compared with the original PNJL model,a superiority of the improved PNJL model is that it can effectively describe the confinement–deconfinement transition at low temperature and high density.And the QCD phase diagram will be modified to a certain degree if the strength of the quantum backreaction of matter sector to glue sector is strong.One evident variation is that the region of quarkyonic phase will be greatly reduced in the improved PNJL model.This means that the modification to the Polyakov loop potential with the chemical potential dependence is possibly a significant improvement in exploring the full QCD phase structure.展开更多
Based on a general analysis of Green functions in the real-time thermal field theory, we have proven that the four-point amputated functions in an NJL model in the fermion bubble diagram approximation behave like usua...Based on a general analysis of Green functions in the real-time thermal field theory, we have proven that the four-point amputated functions in an NJL model in the fermion bubble diagram approximation behave like usual two-point functions. We expound the thermal transformations of the matrix propagators for a scalar bound state in the FF basis and in the RA basis respectively. The resulting physical causal, advanced and retarded propagators are respectively identical to corresponding ones derived in the imaginary-time formalism, and this shows once again the complete equivalence of the two formalisms of thermal field theory on the discussed problem in the NJL model.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12205158 and 11975132)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2021QA037,ZR2022JQ04 and ZR2019YQ01)。
文摘We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-monotonic behavior was observed in all these quantities around the phase transition boundary,which also revealed the properties of the critical point.Further,this study indicated that the chiral phase transition boundary and critical point could vary depending on the scalarvector coupling constant G_(SV).At finite densities and temperatures,the negative G_(SV)term exhibited attractive interactions,which enhanced the critical point temperature and reduced the chemical potential.The G_(SV)term also affected the properties of the high-order susceptibilities,speed of sound,and polytropic index near the critical point.The non-monotonic(peak or dip)structures of these quantities shifted to a low baryon chemical potential(and high temperature)with a negative G_(SV).G_(SV)also changed the amplitude and range of the nonmonotonic regions.Therefore,the scalar-vector interaction was useful for locating the phase boundary and critical point in QCD phase diagram by comparing the experimental data.The study of the non-monotonic behavior of high-order susceptibilities,speed of sound,and polytropic index is of great interest,and further observations related to high-order susceptibilities,speed of sound,and polytropic index being found and applied to the search for critical points in heavy-ion collisions and the study of compact stars are eagerly awaited.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (No.2020B0301030008)the Natural Science Foundation of China (No.11935007)the Science and Technology Program of Guangzhou (No.2019050001).
文摘With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To calculate the transport coefficients we utilized the kinetic theory in the relaxation time approximation, where the momentum anisotropy is embedded in the estimation of both the distribution function and relaxation time. It was shown that an increase in the anisotropy parameterξmay result in a catalysis of chiral symmetry breaking. The critical endpoint(CEP) is shifted to lower temperatures and larger quark chemical potentials asξincreases, and the impact of momentum anisotropy on the CEP temperature is almost the same as that on the quark chemical potential of the CEP. The meson masses and the associated decay widths also exhibit a significant ξ dependence. It was observed that the temperature behavior of the scaled shear viscosity η/T~3 and scaled electrical conductivity σ/T exhibited a similar dip structure, with the minima of both η/T~3 and σ/T shifting toward higher temperatures with increasing ξ. Furthermore,we demonstrated that the Seebeck coefficient S decreases when the temperature rises and its sign is positive, indicating that the dominant carriers for converting the temperature gradient to the electric field are up-quarks. The Seebeck coefficient S is significantly enhanced with a largeξfor a temperature below the critical temperature.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10428510 and 10575058. One of the authors (Chang S.) thanks the High Energy Nuclear Physics Group of Tsinghua University for kind hospitality and Lianyi He and Xuewen Hao for helpful discussions.
文摘We investigate nucleon mass splitting at finite isospin chemical potential in the frame of the two-flavour Nambu-Jona-Lasinio model. It is analytically proven that in the phase with explicit isospin symmetry breaking, the proton mass decreases and the neutron mass increases linearly in the isospin chemical potential.
基金The project supported in part by National Natural Science Foundations of China under Grant Nos.10575002 and 10421503
文摘We derive the scalar resonance coupling constants of resonance chiral theory from the extended Nambu Jona-Lasinio model by using heat-kernel expansion.
基金supported by the National Natural Science Foundation of China(No.11305121)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130201120046)+1 种基金the Natural Science Basic Research Plan in Shanxi Province of China(No.2014JQ1012)the Fundamental Research Funds for the Central Universities
文摘We report our recent progress on the QCD phase structure.We explore the properties of quark–gluon matter in the improved Polyakov–Nambu–Jona–Lasinio(PNJL)model by introducing a chemical potential-dependent Polyakov loop potential.This treatment effectively reflects the quantum backreaction of matter sector to glue sector at nonzero chemical potential.Compared with the original PNJL model,a superiority of the improved PNJL model is that it can effectively describe the confinement–deconfinement transition at low temperature and high density.And the QCD phase diagram will be modified to a certain degree if the strength of the quantum backreaction of matter sector to glue sector is strong.One evident variation is that the region of quarkyonic phase will be greatly reduced in the improved PNJL model.This means that the modification to the Polyakov loop potential with the chemical potential dependence is possibly a significant improvement in exploring the full QCD phase structure.
文摘Based on a general analysis of Green functions in the real-time thermal field theory, we have proven that the four-point amputated functions in an NJL model in the fermion bubble diagram approximation behave like usual two-point functions. We expound the thermal transformations of the matrix propagators for a scalar bound state in the FF basis and in the RA basis respectively. The resulting physical causal, advanced and retarded propagators are respectively identical to corresponding ones derived in the imaginary-time formalism, and this shows once again the complete equivalence of the two formalisms of thermal field theory on the discussed problem in the NJL model.