The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of co...The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.展开更多
Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy ...Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop communications.But,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much needed.However,reducing energy con-sumption can increase the network lifetime in effective manner.For that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor nodes.In that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member nodes.For providing equal rate of energy consumption among nodes,the dimensions of framed clusters are measured.Moreover,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base station.The evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head node.Additionally,the model also provides higher throughput and minimal delay in delivering data packets.展开更多
Real-time applications based on Wireless Sensor Network(WSN)tech-nologies are quickly increasing due to intelligent surroundings.Among the most significant resources in the WSN are battery power and security.Clustering...Real-time applications based on Wireless Sensor Network(WSN)tech-nologies are quickly increasing due to intelligent surroundings.Among the most significant resources in the WSN are battery power and security.Clustering stra-tegies improve the power factor and secure the WSN environment.It takes more electricity to forward data in a WSN.Though numerous clustering methods have been developed to provide energy consumption,there is indeed a risk of unequal load balancing,resulting in a decrease in the network’s lifetime due to network inequalities and less security.These possibilities arise due to the cluster head’s limited life span.These cluster heads(CH)are in charge of all activities and con-trol intra-cluster and inter-cluster interactions.The proposed method uses Lifetime centric load balancing mechanisms(LCLBM)and Cluster-based energy optimiza-tion using a mobile sink algorithm(CEOMS).LCLBM emphasizes the selection of CH,system architectures,and optimal distribution of CH.In addition,the LCLBM was added with an assistant cluster head(ACH)for load balancing.Power consumption,communications latency,the frequency of failing nodes,high security,and one-way delay are essential variables to consider while evaluating LCLBM.CEOMS will choose a cluster leader based on the influence of the fol-lowing parameters on the energy balance of WSNs.According to simulatedfind-ings,the suggested LCLBM-CEOMS method increases cluster head selection self-adaptability,improves the network’s lifetime,decreases data latency,and bal-ances network capacity.展开更多
Internet of Things(IoT)empowers imaginative applications and permits new services when mobile nodes are included.For IoT-enabled low-power and lossy networks(LLN),the Routing Protocol for Low-power and Lossy Networks(...Internet of Things(IoT)empowers imaginative applications and permits new services when mobile nodes are included.For IoT-enabled low-power and lossy networks(LLN),the Routing Protocol for Low-power and Lossy Networks(RPL)has become an established standard routing protocol.Mobility under standard RPL remains a difficult issue as it causes continuous path disturbance,energy loss,and increases the end-to-end delay in the network.In this unique circumstance,a Balanced-load and Energy-efficient RPL(BE-RPL)is proposed.It is a routing technique that is both energy-efficient and mobility-aware.It responds quicker to link breakage through received signal strength-based mobility monitoring and selecting a new preferred parent reactively.The proposed system also implements load balancing among stationary nodes for leaf node allocation.Static nodes with more leaf nodes are restricted from participating in the election for a new preferred parent.The performance of BE-RPL is assessed using the COOJA simulator.It improves the energy use,network control overhead,frame acknowledgment ratio,and packet delivery ratio of the network.展开更多
目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类...目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类,为大流计算所有源至目的主机可达路径的最短跳数路径集;然后,根据LLDP和ECHO测量链路时延以求得时延最优路径集;最后,采用概率拟合算法分配路径,实现数据中心网络流量负载均衡.在相同场景下的实验结果表明,与ECMP、Hedera和DIFF算法相比,DSA-D算法具有更好的吞吐量、链路带宽利用率和平均往返时延.展开更多
针对大数据环境下并行深度森林算法中存在不相关及冗余特征过多、多粒度扫描不平衡、分类性能不足以及并行化效率低等问题,提出了基于互信息和融合加权的并行深度森林算法(parallel deep forest algorithm based on mutual information ...针对大数据环境下并行深度森林算法中存在不相关及冗余特征过多、多粒度扫描不平衡、分类性能不足以及并行化效率低等问题,提出了基于互信息和融合加权的并行深度森林算法(parallel deep forest algorithm based on mutual information and mixed weighting,PDF-MIMW)。首先,在特征降维阶段提出了基于互信息的特征提取策略(feature extraction strategy based on mutual information,FE-MI),结合特征重要性、交互性和冗余性度量过滤原始特征,剔除过多的不相关和冗余特征;接着,在多粒度扫描阶段提出了基于填充的改进多粒度扫描策略(improved multi-granularity scanning strategy based on padding,IMGS-P),对精简后的特征进行填充并对窗口扫描后的子序列进行随机采样,保证多粒度扫描的平衡;其次,在级联森林构建阶段提出了并行子森林构建策略(sub-forest construction strategy based on mixed weighting,SFC-MW),结合Spark框架并行构建加权子森林,提升模型的分类性能;最后,在类向量合并阶段提出基于混合粒子群算法的负载均衡策略(load balancing strategy based on hybrid particle swarm optimization algorithm,LB-HPSO),优化Spark框架中任务节点的负载分配,降低类向量合并时的等待时长,提高模型的并行化效率。实验表明,PDF-MIMW算法的分类效果更佳,同时在大数据环境下的训练效率更高。展开更多
排序算法是计算机科学领域的一个基础算法,是大量应用的算法核心。在大数据时代,随着数据量的极速增长,并行排序算法受到广泛关注。现有的并行排序算法普遍存在通信开销过大、负载不均衡等问题,导致算法难以大规模扩展。针对以上问题,...排序算法是计算机科学领域的一个基础算法,是大量应用的算法核心。在大数据时代,随着数据量的极速增长,并行排序算法受到广泛关注。现有的并行排序算法普遍存在通信开销过大、负载不均衡等问题,导致算法难以大规模扩展。针对以上问题,提出一种大规模可扩展的正则采样并行排序(scalable parallel sorting by regular sampling,ScaPSRS)算法,摒弃传统正则采样并行排序(parallel sorting by regular sampling,PSRS)算法中由一个进程负责采样的做法,转而让所有进程参与正则采样,选出p-1个分隔元素,将整个数据集划分成p个不相交的子集,然后实施并行排序,避免了单一进程的采样瓶颈。此外,ScaPSRS采用一种新的迭代更新策略选择p-1个分隔元素,保证划分的p个子集尽可能大小相同,从而确保p个进程对各自的子集进行本地排序时的负载均衡。在天河二号超级计算机上进行的大量实验表明,ScaPSRS算法能够成功地扩展到32000个内核,性能比PSRS算法和Hofmann等人提出的分区算法分别提升了3.7倍和11.7倍。展开更多
随着物联网与互联网融合的不断深化,感知层与应用层之间的互联互通要求不断提高。针对现有数据采集系统存在的规范性、扩展性和适应性不足的问题,文章提出一套基于对象连接与嵌入过程控制统一架构(object linking and embedding for pro...随着物联网与互联网融合的不断深化,感知层与应用层之间的互联互通要求不断提高。针对现有数据采集系统存在的规范性、扩展性和适应性不足的问题,文章提出一套基于对象连接与嵌入过程控制统一架构(object linking and embedding for process control unified architecture,OPC UA)协议的分布式数据采集处理系统架构。对数据采集处理系统各个模块进行功能解耦和架构重组,分别介绍该系统硬件和软件架构;针对发布订阅模式下负载的特异性,提出一种改进的适用于OPC UA分布式订阅的负载均衡算法;最后在某车企实例验证该系统架构。结果表明,基于OPC UA的分布式数据采集处理系统数据采集处理效果良好,证明了该系统架构的可行性及有效性。展开更多
基金Project(71371193)supported by the National Natural Science Foundation of ChinaProjects(2005K1001,2007K1005)supported by Guangzhou-Shenzhen Railway Company Limited,China
文摘The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.
文摘Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop communications.But,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much needed.However,reducing energy con-sumption can increase the network lifetime in effective manner.For that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor nodes.In that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member nodes.For providing equal rate of energy consumption among nodes,the dimensions of framed clusters are measured.Moreover,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base station.The evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head node.Additionally,the model also provides higher throughput and minimal delay in delivering data packets.
文摘Real-time applications based on Wireless Sensor Network(WSN)tech-nologies are quickly increasing due to intelligent surroundings.Among the most significant resources in the WSN are battery power and security.Clustering stra-tegies improve the power factor and secure the WSN environment.It takes more electricity to forward data in a WSN.Though numerous clustering methods have been developed to provide energy consumption,there is indeed a risk of unequal load balancing,resulting in a decrease in the network’s lifetime due to network inequalities and less security.These possibilities arise due to the cluster head’s limited life span.These cluster heads(CH)are in charge of all activities and con-trol intra-cluster and inter-cluster interactions.The proposed method uses Lifetime centric load balancing mechanisms(LCLBM)and Cluster-based energy optimiza-tion using a mobile sink algorithm(CEOMS).LCLBM emphasizes the selection of CH,system architectures,and optimal distribution of CH.In addition,the LCLBM was added with an assistant cluster head(ACH)for load balancing.Power consumption,communications latency,the frequency of failing nodes,high security,and one-way delay are essential variables to consider while evaluating LCLBM.CEOMS will choose a cluster leader based on the influence of the fol-lowing parameters on the energy balance of WSNs.According to simulatedfind-ings,the suggested LCLBM-CEOMS method increases cluster head selection self-adaptability,improves the network’s lifetime,decreases data latency,and bal-ances network capacity.
文摘Internet of Things(IoT)empowers imaginative applications and permits new services when mobile nodes are included.For IoT-enabled low-power and lossy networks(LLN),the Routing Protocol for Low-power and Lossy Networks(RPL)has become an established standard routing protocol.Mobility under standard RPL remains a difficult issue as it causes continuous path disturbance,energy loss,and increases the end-to-end delay in the network.In this unique circumstance,a Balanced-load and Energy-efficient RPL(BE-RPL)is proposed.It is a routing technique that is both energy-efficient and mobility-aware.It responds quicker to link breakage through received signal strength-based mobility monitoring and selecting a new preferred parent reactively.The proposed system also implements load balancing among stationary nodes for leaf node allocation.Static nodes with more leaf nodes are restricted from participating in the election for a new preferred parent.The performance of BE-RPL is assessed using the COOJA simulator.It improves the energy use,network control overhead,frame acknowledgment ratio,and packet delivery ratio of the network.
文摘目前数据中心网络(data center network,DCN)的负载均衡方法存在对大小流的调度缺乏全局实时检测等不足,部分大流会造成拥塞、负载不均衡和带宽碎片等问题.针对上述问题,提出了一种SDN网络流量负载均衡算法—DSA-D.首先,对流量进行分类,为大流计算所有源至目的主机可达路径的最短跳数路径集;然后,根据LLDP和ECHO测量链路时延以求得时延最优路径集;最后,采用概率拟合算法分配路径,实现数据中心网络流量负载均衡.在相同场景下的实验结果表明,与ECMP、Hedera和DIFF算法相比,DSA-D算法具有更好的吞吐量、链路带宽利用率和平均往返时延.
文摘针对大数据环境下并行深度森林算法中存在不相关及冗余特征过多、多粒度扫描不平衡、分类性能不足以及并行化效率低等问题,提出了基于互信息和融合加权的并行深度森林算法(parallel deep forest algorithm based on mutual information and mixed weighting,PDF-MIMW)。首先,在特征降维阶段提出了基于互信息的特征提取策略(feature extraction strategy based on mutual information,FE-MI),结合特征重要性、交互性和冗余性度量过滤原始特征,剔除过多的不相关和冗余特征;接着,在多粒度扫描阶段提出了基于填充的改进多粒度扫描策略(improved multi-granularity scanning strategy based on padding,IMGS-P),对精简后的特征进行填充并对窗口扫描后的子序列进行随机采样,保证多粒度扫描的平衡;其次,在级联森林构建阶段提出了并行子森林构建策略(sub-forest construction strategy based on mixed weighting,SFC-MW),结合Spark框架并行构建加权子森林,提升模型的分类性能;最后,在类向量合并阶段提出基于混合粒子群算法的负载均衡策略(load balancing strategy based on hybrid particle swarm optimization algorithm,LB-HPSO),优化Spark框架中任务节点的负载分配,降低类向量合并时的等待时长,提高模型的并行化效率。实验表明,PDF-MIMW算法的分类效果更佳,同时在大数据环境下的训练效率更高。
文摘排序算法是计算机科学领域的一个基础算法,是大量应用的算法核心。在大数据时代,随着数据量的极速增长,并行排序算法受到广泛关注。现有的并行排序算法普遍存在通信开销过大、负载不均衡等问题,导致算法难以大规模扩展。针对以上问题,提出一种大规模可扩展的正则采样并行排序(scalable parallel sorting by regular sampling,ScaPSRS)算法,摒弃传统正则采样并行排序(parallel sorting by regular sampling,PSRS)算法中由一个进程负责采样的做法,转而让所有进程参与正则采样,选出p-1个分隔元素,将整个数据集划分成p个不相交的子集,然后实施并行排序,避免了单一进程的采样瓶颈。此外,ScaPSRS采用一种新的迭代更新策略选择p-1个分隔元素,保证划分的p个子集尽可能大小相同,从而确保p个进程对各自的子集进行本地排序时的负载均衡。在天河二号超级计算机上进行的大量实验表明,ScaPSRS算法能够成功地扩展到32000个内核,性能比PSRS算法和Hofmann等人提出的分区算法分别提升了3.7倍和11.7倍。
文摘随着物联网与互联网融合的不断深化,感知层与应用层之间的互联互通要求不断提高。针对现有数据采集系统存在的规范性、扩展性和适应性不足的问题,文章提出一套基于对象连接与嵌入过程控制统一架构(object linking and embedding for process control unified architecture,OPC UA)协议的分布式数据采集处理系统架构。对数据采集处理系统各个模块进行功能解耦和架构重组,分别介绍该系统硬件和软件架构;针对发布订阅模式下负载的特异性,提出一种改进的适用于OPC UA分布式订阅的负载均衡算法;最后在某车企实例验证该系统架构。结果表明,基于OPC UA的分布式数据采集处理系统数据采集处理效果良好,证明了该系统架构的可行性及有效性。