Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of matter over antimatter. Purpose: This paper shows how the baryogenesis and leptogenesis asymmetries may both be resolved....Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of matter over antimatter. Purpose: This paper shows how the baryogenesis and leptogenesis asymmetries may both be resolved. Approach: Design methods were used to develop a conceptual mechanics for the remanufacturing processes that transform particles in the decay processes. This was based on the structures for the photon, electron, antielectron, proton and antineutrino as previously identified as logical necessities for the beta decay process, and represented as a non-local hidden-variable design with discrete fields. Findings: The solution is given in terms of a mechanics that defines the transformation of discrete field structures in particles. The genesis problem is shown to be solvable. The mechanics describes pair production of an electron and antielectron from two initial photons, and subsequent remanufacture of the antielectron into a proton. It is predicted that two antineutrinos would be emitted, which are testable and falsifiable. The theory identifies that the role of the antineutrinos is to remove the antimatter handed field structures. The original electron and proton may bond to form a simple hydrogen atom, or combine via electron capture to form a neutron and hence heavier nuclides. The subsequent preponderance of the matter pathways in the genesis production sequence is also addressed and is explained as domain warfare between the matter and antimatter species. Originality: The concept of remanufacture of antielectrons into protons, with emission of antineutrinos, is novel. Extensions of the theory explain the nuclides. Consequently the theory explains from pair production up to nuclear structure, which is also original.展开更多
文摘Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of matter over antimatter. Purpose: This paper shows how the baryogenesis and leptogenesis asymmetries may both be resolved. Approach: Design methods were used to develop a conceptual mechanics for the remanufacturing processes that transform particles in the decay processes. This was based on the structures for the photon, electron, antielectron, proton and antineutrino as previously identified as logical necessities for the beta decay process, and represented as a non-local hidden-variable design with discrete fields. Findings: The solution is given in terms of a mechanics that defines the transformation of discrete field structures in particles. The genesis problem is shown to be solvable. The mechanics describes pair production of an electron and antielectron from two initial photons, and subsequent remanufacture of the antielectron into a proton. It is predicted that two antineutrinos would be emitted, which are testable and falsifiable. The theory identifies that the role of the antineutrinos is to remove the antimatter handed field structures. The original electron and proton may bond to form a simple hydrogen atom, or combine via electron capture to form a neutron and hence heavier nuclides. The subsequent preponderance of the matter pathways in the genesis production sequence is also addressed and is explained as domain warfare between the matter and antimatter species. Originality: The concept of remanufacture of antielectrons into protons, with emission of antineutrinos, is novel. Extensions of the theory explain the nuclides. Consequently the theory explains from pair production up to nuclear structure, which is also original.