In the time-difference-of-arrival(TDOA)localization,robust least squares(LS)problems solved by mathematical programming were proven to be superior in mitigating the effects of non-line-of-sight(NLOS)propagation.Howeve...In the time-difference-of-arrival(TDOA)localization,robust least squares(LS)problems solved by mathematical programming were proven to be superior in mitigating the effects of non-line-of-sight(NLOS)propagation.However,the existing algorithms still suffer from two disadvantages:1)The algorithms strongly depend on prior information;2)The approaches do not satisfy the mean square error(MSE)optimal criterion of the measurement noise.To tackle the troubles,we first formulate an MSE minimization model for measurement noise by taking the source and the NLOS biases as variables.To obtain stable solutions,we introduce a penalty function to avoid abnormal estimates.We further tackle the nonconvex locating problem with semidefinite relaxation techniques.Finally,we incorporate mixed constraints and variable information to improve the estimation accuracy.Simulations and experiments show that the proposed method achieves consistent performance and good accuracy in dynamic NLOS environments.展开更多
Cell-free massive multiple-input multipleoutput(MIMO)is a promising technology for future wireless communications,where a large number of distributed access points(APs)simultaneously serve all users over the same time...Cell-free massive multiple-input multipleoutput(MIMO)is a promising technology for future wireless communications,where a large number of distributed access points(APs)simultaneously serve all users over the same time-frequency resources.Since users and APs may locate close to each other,the line-of-sight(Lo S)transmission occurs more frequently in cell-free massive MIMO systems.Hence,in this paper,we investigate the cell-free massive MIMO system with Lo S and non-line-of-sight(NLo S)transmissions,where APs and users are both distributed according to Poisson point process.Using tools from stochastic geometry,we derive a tight lower bound for the user downlink achievable rate and we further obtain the energy efficiency(EE)by considering the power consumption on downlink payload transmissions and circuitry dissipation.Based on the analysis,the optimal AP density and AP antenna number that maximize the EE are obtained.It is found that compared with the previous work that only considers NLo S transmissions,the actual optimal AP density should be much smaller,and the maximized EE is actually much higher.展开更多
Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a ...Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.展开更多
减小非视距(Non Line Of Sight,NLOS)误差定位算法大多要求在移动台和基站之间至少存在一条视距(Line Of Sight,LOS)路径。提出一种新的NLOS环境中基于散射模型分类传播环境的TOA(Time Of Arrival)定位方法,将散射模型中NLOS传播的统计...减小非视距(Non Line Of Sight,NLOS)误差定位算法大多要求在移动台和基站之间至少存在一条视距(Line Of Sight,LOS)路径。提出一种新的NLOS环境中基于散射模型分类传播环境的TOA(Time Of Arrival)定位方法,将散射模型中NLOS传播的统计特性加入到定位算法中,使用散射模型研究了3种定位算法,方差匹配算法,期望最大算法和贝叶斯算法。并对算法进行仿真,仿真结果表明,本算法性能优于传统定位算法。展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62101370。
文摘In the time-difference-of-arrival(TDOA)localization,robust least squares(LS)problems solved by mathematical programming were proven to be superior in mitigating the effects of non-line-of-sight(NLOS)propagation.However,the existing algorithms still suffer from two disadvantages:1)The algorithms strongly depend on prior information;2)The approaches do not satisfy the mean square error(MSE)optimal criterion of the measurement noise.To tackle the troubles,we first formulate an MSE minimization model for measurement noise by taking the source and the NLOS biases as variables.To obtain stable solutions,we introduce a penalty function to avoid abnormal estimates.We further tackle the nonconvex locating problem with semidefinite relaxation techniques.Finally,we incorporate mixed constraints and variable information to improve the estimation accuracy.Simulations and experiments show that the proposed method achieves consistent performance and good accuracy in dynamic NLOS environments.
基金supported in part by the National Natural Science Foundation of China under Grant 62171231in part by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-1)。
文摘Cell-free massive multiple-input multipleoutput(MIMO)is a promising technology for future wireless communications,where a large number of distributed access points(APs)simultaneously serve all users over the same time-frequency resources.Since users and APs may locate close to each other,the line-of-sight(Lo S)transmission occurs more frequently in cell-free massive MIMO systems.Hence,in this paper,we investigate the cell-free massive MIMO system with Lo S and non-line-of-sight(NLo S)transmissions,where APs and users are both distributed according to Poisson point process.Using tools from stochastic geometry,we derive a tight lower bound for the user downlink achievable rate and we further obtain the energy efficiency(EE)by considering the power consumption on downlink payload transmissions and circuitry dissipation.Based on the analysis,the optimal AP density and AP antenna number that maximize the EE are obtained.It is found that compared with the previous work that only considers NLo S transmissions,the actual optimal AP density should be much smaller,and the maximized EE is actually much higher.
基金supported in part by the Joint Project of National Natural Science Foundation of China(U22B2004,62371106)in part by China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.
文摘减小非视距(Non Line Of Sight,NLOS)误差定位算法大多要求在移动台和基站之间至少存在一条视距(Line Of Sight,LOS)路径。提出一种新的NLOS环境中基于散射模型分类传播环境的TOA(Time Of Arrival)定位方法,将散射模型中NLOS传播的统计特性加入到定位算法中,使用散射模型研究了3种定位算法,方差匹配算法,期望最大算法和贝叶斯算法。并对算法进行仿真,仿真结果表明,本算法性能优于传统定位算法。