To balance the relationship between high yield and low nitrogen supply,the nitrogen utilization efficiency of watermelon needs to be improved urgently.Nodule inception-like Protein(NLP)transcription factors play a key...To balance the relationship between high yield and low nitrogen supply,the nitrogen utilization efficiency of watermelon needs to be improved urgently.Nodule inception-like Protein(NLP)transcription factors play a key node role in nitrate response and growth and development of plant,however,comprehensive analysis of the NLP gene family in watermelon is unclear.This study explored the functional classification,evolutionary characteristics,and expression profile of the ClNLP gene family.Three ClNLPs were categorized into three groups according to their gene structure and phylogeny.All of them contained the conserved RWP-RK and PB1 domains.Evolutionary analysis of ClNLPs revealed that ClNLP1 and ClNLP3 underwent strong purified selection.In addition,cis-acting elements related to plant hormones and abiotic stresses were present in the ClNLP promoter.According to tissue-specific analysis ClNLP was widely expressed in roots,stems,leaves,flowers and fruits,and ClNLP1 was significantly induced in the roots of different nitrogen utilization varieties under different nitrate nitrogen supply.The SRTING functional protein association network suggested that ClNLP1 is associated with most genes,such as NRT1.1,NRT2.1,NIA1,and NIR1,and the dual-luciferase reporter assay found that ClNLP1 positively regulates the expression of ClNRT2.1.We speculated that ClNLP1 might play a central role in regulating the response of watermelon to nitrate nitrogen.展开更多
随着互联网信息的发展,如何有效地表示不同语言所含的信息已成为自然语言处理(Natural Language Processing,NLP)领域的一项重要任务.然而,很多传统的机器学习模型依赖在高资源语言中进行训练,无法迁移到低资源语言中使用.为了解决这一...随着互联网信息的发展,如何有效地表示不同语言所含的信息已成为自然语言处理(Natural Language Processing,NLP)领域的一项重要任务.然而,很多传统的机器学习模型依赖在高资源语言中进行训练,无法迁移到低资源语言中使用.为了解决这一问题,结合迁移学习和深度学习模型,提出一种多语言双向编码器表征量(Multi-lingual Bidirectional Encoder Representations from Transformers,M-BERT)的迁移学习方法.该方法利用M-BERT作为特征提取器,在源语言领域和目标语言领域之间进行特征转换,减小不同语言领域之间的差异,从而提高目标任务在不同领域之间的泛化能力.首先,在构建BERT模型的基础上,通过数据收集处理、训练设置、参数估计和模型训练等预训练操作完成M-BERT模型的构建,并在目标任务上进行微调.然后,利用迁移学习实现M-BERT模型在跨语言文本分析方面的应用.最后,在从英语到法语和德语的跨语言迁移实验中,证明了本文模型具有较高的性能质量和较小的计算量,并在联合训练方案中达到了96.2%的准确率.研究结果表明,该文模型实现了跨语言数据迁移,且验证了其在跨语言NLP领域的有效性和创新性.展开更多
企业采购管理是一项十分复杂的工程,因为无论是生产服务、业务开展还是日常运营都需要进行大量采购。随着行业的发展、技术的进步与管理的革新,企业采购项目越来越复杂,且出现了采购计划不科学、重复采购等问题,这严重影响了企业高质量...企业采购管理是一项十分复杂的工程,因为无论是生产服务、业务开展还是日常运营都需要进行大量采购。随着行业的发展、技术的进步与管理的革新,企业采购项目越来越复杂,且出现了采购计划不科学、重复采购等问题,这严重影响了企业高质量经营管理目标的实现。因此,企业需要在采购管理中融入新观念,运用新方法、新技术来提升采购管理质量。自然语言处理(Natural Language Processing,NLP)技术可以在企业采购计划编制环节,以采购目录为依据对采购需求进行模糊匹配、自动纠错、分类整合,形成精简、科学的采购计划草案,并综合利用近几年采购计划相关资料,对采购项目进行横向与纵向比较。基于此,文章阐述NLP技术在企业采购管理中应用的积极作用,提出NLP技术在企业采购管理中的应用策略,以供参考。展开更多
随着网络业务的快速发展和网络技术的快速演进,人们对网络运维的要求也随之提高。当下的网络运维存在技术门槛高、闭环效率低、运维一致性差等问题。AI运维机器人基于NLP(Natural Language Processing,自然语言处理)技术,为运维人员提...随着网络业务的快速发展和网络技术的快速演进,人们对网络运维的要求也随之提高。当下的网络运维存在技术门槛高、闭环效率低、运维一致性差等问题。AI运维机器人基于NLP(Natural Language Processing,自然语言处理)技术,为运维人员提供极简的“对话式”运维操作,智能识别运维意图和操作对象,高效自动化执行任务,有效降低了运维人员的技术门槛,替代烦琐人工操作,有效提升了运维效率,实现了网络运维的提质增效。展开更多
随着计算机算力的提升和智能设备的普及,社会逐步进入智慧化时代。高校图书馆作为高校的文献信息中心,进行智慧化转型提升服务质量是时代所需。因此,文章借助智能问答技术,设计了基于自然语言处理(Natural Language Processing,NLP)的...随着计算机算力的提升和智能设备的普及,社会逐步进入智慧化时代。高校图书馆作为高校的文献信息中心,进行智慧化转型提升服务质量是时代所需。因此,文章借助智能问答技术,设计了基于自然语言处理(Natural Language Processing,NLP)的图书馆智能问答系统,创新图书馆参考咨询服务模式,提高图书馆服务水平和效率。展开更多
在数字化时代,智能语音质检成为企业提升工作效率的重要工具,其中自然语言处理(Natural Language Processing,NLP)技术的应用为智能语音质检提供了技术支持。NLP技术通过情感分析、语义分析等手段,使得质检过程更加高效、准确,并降低了...在数字化时代,智能语音质检成为企业提升工作效率的重要工具,其中自然语言处理(Natural Language Processing,NLP)技术的应用为智能语音质检提供了技术支持。NLP技术通过情感分析、语义分析等手段,使得质检过程更加高效、准确,并降低了质检成本。基于此,探讨了NLP技术在智能语音质检中的应用优势和具体实现方式。展开更多
In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes....In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes.Current techniques for personalized medicine,disease diagnosis,treatment recommendations,and resource optimization in the Internet of Medical Things(IoMT)vary widely,including methods such as rule-based systems,machine learning algorithms,and data-driven approaches.However,many of these techniques face limitations in accuracy,scalability,and adaptability to complex clinical scenarios.This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the IoMT.Through the integration of advanced data analytics methodologies with NLP capabilities,we propose a comprehensive framework designed to enhance personalized medicine,streamline disease diagnosis,provide treatment recommendations,and optimize resource allocation.Using a systematic methodology data was collected from open data repositories,then preprocessed using data cleaning,missing value imputation,feature engineering,and data normalization and scaling.Optimization algorithms,such as Gradient Descent,Adam Optimization,and Stochastic Gradient Descent,were employed in the framework to enhance model performance.These were integrated with NLP processes,including Text Preprocessing,Tokenization,and Sentiment Analysis to facilitate comprehensive analysis of the data to provide actionable insights from the vast streams of data generated by IoMT devices.Lastly,through a synthesis of existing research and real-world case studies,we demonstrated the impact of AI-NLP fusion on healthcare outcomes and operational efficiency.The simulation produced compelling results,achieving an average diagnostic accuracy of 93.5%for the given scenarios,and excelled even further in instances involving rare diseases,achieving an accuracy rate of 98%.With regard to patient-specific treatment plans it generated them with an average precision of 96.7%.Improvements in early risk stratification and enhanced documentation were also noted.Furthermore,the study addresses ethical considerations and challenges associated with deploying AI and NLP in healthcare decision-making processes,offering insights into risk-mitigating strategies.This research contributes to advancing the understanding of AI-driven optimization algorithms in healthcare data analytics,with implications for healthcare practitioners,researchers,and policymakers.By leveraging AI and NLP technologies in IoMT environments,this study paves the way for innovative strategies to enhance patient care and operational effectiveness.Ultimately,this work underscores the transformative potential of AI-NLP fusion in shaping the future of healthcare.展开更多
自然语言处理(Natural Language Processing,NLP)是人工智能(Artificial Intelligence,AI)领域的重要分支,主要研究使计算机能够理解、翻译、生成和修改人类的自然语言。它利用机器学习算法和模型从海量的语料库中学习语言知识,并应用...自然语言处理(Natural Language Processing,NLP)是人工智能(Artificial Intelligence,AI)领域的重要分支,主要研究使计算机能够理解、翻译、生成和修改人类的自然语言。它利用机器学习算法和模型从海量的语料库中学习语言知识,并应用于自然语言处理,从而实现自动化处理自然语言的目标。基于这一技术,通过建设外呼平台,实现自动拨打电话给客户并在沟通过程中利用机器人对实时语音流进行语音识别,以挖掘客户意图,根据预设的话术模板以真人语音录音或TTS播报形式与客户进行交流。通过识别和筛选单通话内容,高效准确地锁定潜在意向客户,从而实现提高效率、降低成本的目标。展开更多
随着人工智能技术的快速发展,自然语言处理(Natural Language Processing,NLP)技术在各个领域得到了广泛应用。文章提出一种基于NLP技术的智能培训系统中知识点与题库关联方法,该方法利用NLP技术对培训材料进行文本分析,自动提取知识点...随着人工智能技术的快速发展,自然语言处理(Natural Language Processing,NLP)技术在各个领域得到了广泛应用。文章提出一种基于NLP技术的智能培训系统中知识点与题库关联方法,该方法利用NLP技术对培训材料进行文本分析,自动提取知识点,并基于知识点和题库之间建立关联模型,实现试卷题目的自动分配。该方法能够有效提高培训系统的智能化水平,提高培训效率和质量。展开更多
人工智能(Artificial Intelligence,AI)技术,尤其是自然语言处理(Nature Language Processing,NLP)工具,在科技期刊出版领域具有重要的应用价值。通过系统性分析,发现NLP技术在自动化稿件初审、审稿意见整合、编辑加工与语言润色等环节...人工智能(Artificial Intelligence,AI)技术,尤其是自然语言处理(Nature Language Processing,NLP)工具,在科技期刊出版领域具有重要的应用价值。通过系统性分析,发现NLP技术在自动化稿件初审、审稿意见整合、编辑加工与语言润色等环节中能够有效提升编辑工作的效率和稿件质量。此外,该技术能够促进科技期刊的内容创新与读者互动,通过自动化选题推荐和定制化内容推送,提升了科技期刊的学术价值和市场影响力,并提出了有效利用NLP技术赋能科技期刊编辑和出版全流程的策略。展开更多
基金funded by grants from the China Agriculture Research System of MOF and MARA(Grant No.CARS-25)Special Scientific Research Service Fee of the Chinese Academy of Agricultural Sciences(Grant No.Y2019XK16-03)+2 种基金the Agricultural Science and Technology Innovation Program(Grant No.CAASASTIP-2021-ZFRI)Screening and technical demonstration and popularization of fruit and melon varieties in Xinjiang(Grant No.Y2021XK14)Special funds for basic research and special basic research(Grant No.20131602),Financial technology funding of Changji national agricultural science and technology park(Grant No.2021EK246).
文摘To balance the relationship between high yield and low nitrogen supply,the nitrogen utilization efficiency of watermelon needs to be improved urgently.Nodule inception-like Protein(NLP)transcription factors play a key node role in nitrate response and growth and development of plant,however,comprehensive analysis of the NLP gene family in watermelon is unclear.This study explored the functional classification,evolutionary characteristics,and expression profile of the ClNLP gene family.Three ClNLPs were categorized into three groups according to their gene structure and phylogeny.All of them contained the conserved RWP-RK and PB1 domains.Evolutionary analysis of ClNLPs revealed that ClNLP1 and ClNLP3 underwent strong purified selection.In addition,cis-acting elements related to plant hormones and abiotic stresses were present in the ClNLP promoter.According to tissue-specific analysis ClNLP was widely expressed in roots,stems,leaves,flowers and fruits,and ClNLP1 was significantly induced in the roots of different nitrogen utilization varieties under different nitrate nitrogen supply.The SRTING functional protein association network suggested that ClNLP1 is associated with most genes,such as NRT1.1,NRT2.1,NIA1,and NIR1,and the dual-luciferase reporter assay found that ClNLP1 positively regulates the expression of ClNRT2.1.We speculated that ClNLP1 might play a central role in regulating the response of watermelon to nitrate nitrogen.
文摘随着互联网信息的发展,如何有效地表示不同语言所含的信息已成为自然语言处理(Natural Language Processing,NLP)领域的一项重要任务.然而,很多传统的机器学习模型依赖在高资源语言中进行训练,无法迁移到低资源语言中使用.为了解决这一问题,结合迁移学习和深度学习模型,提出一种多语言双向编码器表征量(Multi-lingual Bidirectional Encoder Representations from Transformers,M-BERT)的迁移学习方法.该方法利用M-BERT作为特征提取器,在源语言领域和目标语言领域之间进行特征转换,减小不同语言领域之间的差异,从而提高目标任务在不同领域之间的泛化能力.首先,在构建BERT模型的基础上,通过数据收集处理、训练设置、参数估计和模型训练等预训练操作完成M-BERT模型的构建,并在目标任务上进行微调.然后,利用迁移学习实现M-BERT模型在跨语言文本分析方面的应用.最后,在从英语到法语和德语的跨语言迁移实验中,证明了本文模型具有较高的性能质量和较小的计算量,并在联合训练方案中达到了96.2%的准确率.研究结果表明,该文模型实现了跨语言数据迁移,且验证了其在跨语言NLP领域的有效性和创新性.
文摘企业采购管理是一项十分复杂的工程,因为无论是生产服务、业务开展还是日常运营都需要进行大量采购。随着行业的发展、技术的进步与管理的革新,企业采购项目越来越复杂,且出现了采购计划不科学、重复采购等问题,这严重影响了企业高质量经营管理目标的实现。因此,企业需要在采购管理中融入新观念,运用新方法、新技术来提升采购管理质量。自然语言处理(Natural Language Processing,NLP)技术可以在企业采购计划编制环节,以采购目录为依据对采购需求进行模糊匹配、自动纠错、分类整合,形成精简、科学的采购计划草案,并综合利用近几年采购计划相关资料,对采购项目进行横向与纵向比较。基于此,文章阐述NLP技术在企业采购管理中应用的积极作用,提出NLP技术在企业采购管理中的应用策略,以供参考。
文摘随着网络业务的快速发展和网络技术的快速演进,人们对网络运维的要求也随之提高。当下的网络运维存在技术门槛高、闭环效率低、运维一致性差等问题。AI运维机器人基于NLP(Natural Language Processing,自然语言处理)技术,为运维人员提供极简的“对话式”运维操作,智能识别运维意图和操作对象,高效自动化执行任务,有效降低了运维人员的技术门槛,替代烦琐人工操作,有效提升了运维效率,实现了网络运维的提质增效。
文摘随着计算机算力的提升和智能设备的普及,社会逐步进入智慧化时代。高校图书馆作为高校的文献信息中心,进行智慧化转型提升服务质量是时代所需。因此,文章借助智能问答技术,设计了基于自然语言处理(Natural Language Processing,NLP)的图书馆智能问答系统,创新图书馆参考咨询服务模式,提高图书馆服务水平和效率。
文摘在数字化时代,智能语音质检成为企业提升工作效率的重要工具,其中自然语言处理(Natural Language Processing,NLP)技术的应用为智能语音质检提供了技术支持。NLP技术通过情感分析、语义分析等手段,使得质检过程更加高效、准确,并降低了质检成本。基于此,探讨了NLP技术在智能语音质检中的应用优势和具体实现方式。
基金the Researchers Supporting Project number(RSP2024R281),King Saud University,Riyadh,Saudi Arabia.
文摘In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes.Current techniques for personalized medicine,disease diagnosis,treatment recommendations,and resource optimization in the Internet of Medical Things(IoMT)vary widely,including methods such as rule-based systems,machine learning algorithms,and data-driven approaches.However,many of these techniques face limitations in accuracy,scalability,and adaptability to complex clinical scenarios.This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the IoMT.Through the integration of advanced data analytics methodologies with NLP capabilities,we propose a comprehensive framework designed to enhance personalized medicine,streamline disease diagnosis,provide treatment recommendations,and optimize resource allocation.Using a systematic methodology data was collected from open data repositories,then preprocessed using data cleaning,missing value imputation,feature engineering,and data normalization and scaling.Optimization algorithms,such as Gradient Descent,Adam Optimization,and Stochastic Gradient Descent,were employed in the framework to enhance model performance.These were integrated with NLP processes,including Text Preprocessing,Tokenization,and Sentiment Analysis to facilitate comprehensive analysis of the data to provide actionable insights from the vast streams of data generated by IoMT devices.Lastly,through a synthesis of existing research and real-world case studies,we demonstrated the impact of AI-NLP fusion on healthcare outcomes and operational efficiency.The simulation produced compelling results,achieving an average diagnostic accuracy of 93.5%for the given scenarios,and excelled even further in instances involving rare diseases,achieving an accuracy rate of 98%.With regard to patient-specific treatment plans it generated them with an average precision of 96.7%.Improvements in early risk stratification and enhanced documentation were also noted.Furthermore,the study addresses ethical considerations and challenges associated with deploying AI and NLP in healthcare decision-making processes,offering insights into risk-mitigating strategies.This research contributes to advancing the understanding of AI-driven optimization algorithms in healthcare data analytics,with implications for healthcare practitioners,researchers,and policymakers.By leveraging AI and NLP technologies in IoMT environments,this study paves the way for innovative strategies to enhance patient care and operational effectiveness.Ultimately,this work underscores the transformative potential of AI-NLP fusion in shaping the future of healthcare.
文摘自然语言处理(Natural Language Processing,NLP)是人工智能(Artificial Intelligence,AI)领域的重要分支,主要研究使计算机能够理解、翻译、生成和修改人类的自然语言。它利用机器学习算法和模型从海量的语料库中学习语言知识,并应用于自然语言处理,从而实现自动化处理自然语言的目标。基于这一技术,通过建设外呼平台,实现自动拨打电话给客户并在沟通过程中利用机器人对实时语音流进行语音识别,以挖掘客户意图,根据预设的话术模板以真人语音录音或TTS播报形式与客户进行交流。通过识别和筛选单通话内容,高效准确地锁定潜在意向客户,从而实现提高效率、降低成本的目标。
文摘随着人工智能技术的快速发展,自然语言处理(Natural Language Processing,NLP)技术在各个领域得到了广泛应用。文章提出一种基于NLP技术的智能培训系统中知识点与题库关联方法,该方法利用NLP技术对培训材料进行文本分析,自动提取知识点,并基于知识点和题库之间建立关联模型,实现试卷题目的自动分配。该方法能够有效提高培训系统的智能化水平,提高培训效率和质量。
文摘人工智能(Artificial Intelligence,AI)技术,尤其是自然语言处理(Nature Language Processing,NLP)工具,在科技期刊出版领域具有重要的应用价值。通过系统性分析,发现NLP技术在自动化稿件初审、审稿意见整合、编辑加工与语言润色等环节中能够有效提升编辑工作的效率和稿件质量。此外,该技术能够促进科技期刊的内容创新与读者互动,通过自动化选题推荐和定制化内容推送,提升了科技期刊的学术价值和市场影响力,并提出了有效利用NLP技术赋能科技期刊编辑和出版全流程的策略。