Inflammasomes are multiprotein intracellular complexes which are responsible for the activation of inflammatory responses. Among various subtypes of inflammasomes, NLRP3 has been a subject of intensive investigation. ...Inflammasomes are multiprotein intracellular complexes which are responsible for the activation of inflammatory responses. Among various subtypes of inflammasomes, NLRP3 has been a subject of intensive investigation. NLRP3 is considered to be a sensor of microbial and other danger signals and plays a crucial role in mucosal immune responses, promoting the maturation of proinflammatory cytokines interleukin 1β(IL-1β) and IL-18. NLRP3 inflammasome has been associated with a variety of inflammatory and autoimmune conditions, including inflammatory bowel diseases(IBD). The role of NLRP3 in IBD is not yet fully elucidated as it seems to demonstrate both pathogenic and protective effects. Studies have shown a relationship between genetic variants and mutations in NLRP3 gene with IBD pathogenesis. A complex interaction between the NLRP3 inflammasome and the mucosal immune response has been reported. Activation of the inflammasome is a key function mediated by the innate immune response and in parallel the signaling through IL-1β and IL-18 is implicated in adaptive immunity. Further research is needed to delineate the precise mechanisms of NLRP3 function in regulating immune responses. Targeting NLRP3 inflammasome and its downstream signaling will provide new insights into the development of future therapeutic strategies.展开更多
Objective To investigate the effect and mechanism of linarin(LA) in an experimental dry eye model.Methods LA or vehicle was applied in two dry eye models: an in vitro hyperosmotic stress model and an in vivo desiccati...Objective To investigate the effect and mechanism of linarin(LA) in an experimental dry eye model.Methods LA or vehicle was applied in two dry eye models: an in vitro hyperosmotic stress model and an in vivo desiccating stress(DS) murine model. The viability of human corneal epithelial cells(HCECs) was measured using a cell counting kit(CCK-8).Tear secretion was assessed using the phenol red cotton test. The tear break-up time(TBUT) was recorded using 0.1% liquid fluorescein sodium. Corneal epithelial permeability was evaluated through Oregon green dextran(OGD) staining.Conjunctival goblet cells were counted using periodic acid-Schiff(PAS) staining. Terminal deoxynucleotidyl transfer d UTP nickend labeling(TUNEL) staining was used to quantify apoptotic cells in both models. The expression of Ki-67 was measured in HCECs in the cell model while that of matrix metalloproteinase(MMP)-3 and-9 was measured in the murine model through immunofluorescence staining. Real-time quantitative PCR(RTqPCR) was performed to assess the expression of MMP-3 and MMP-9 in the corneal epithelium and NLRP3, ASC, Caspase-1,interleukin(IL)-1β, IL-18, and tumor necrosis factor(TNF)-α in the conjunctiva. The protein expression levels of NLRP3, ASC,Caspase-1, IL-1β, and IL-18 in the conjunctiva were assessed via Western blot.Results In the in vitro model, treatment of HCECs with LA showed no toxicity, increased proliferation, and reduced apoptosis. In the murine model, compared to the control, LA significantly increased tear production and TBUT, improved OGD staining, and increased the number of goblet cells. Topical treatment of LA to mice provided decreased expression of MMP-3, MMP-9, TNF-α, and apoptotic corneal epithelium. Topical administration of LA also suppressed the NLRP3 inflammasome in the dry eye disease(DED) murine model by decreasing the expression of NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in the conjunctiva.Conclusion Our findings support the safety and efficacy of LA in the treatment of DED. LA alleviated corneal epithelial damage and suppressed NLRP3 inflammasome-mediated immunity in the conjunctiva in a murine model of DED.展开更多
Triggering receptor expressed on myeloid cells-like 2(TREML2)is a newly identified susceptibility gene for Alzheimer's disease(AD).It encodes a microglial inflammation-associated receptor.To date,the potential rol...Triggering receptor expressed on myeloid cells-like 2(TREML2)is a newly identified susceptibility gene for Alzheimer's disease(AD).It encodes a microglial inflammation-associated receptor.To date,the potential role of mic roglial TREML2 in neuroinflammation in the context of AD remains unclear.In this study,APP/PS1 mice were used to investigate the dynamic changes of TREML2 levels in brain during AD progression.In addition,lipopolysaccharide(LPS)stimulation of primary microglia as well as a lentivirus-mediated TREML2 overexpression and knockdown were employed to explore the role of TREML2 in neuroinflammation in the context of AD.Our res ults show that TREML2 levels gradually increased in the brains of AP P/PS1 mice during disease progression.LPS stimulation of primary microglia led to the release of inflammato ry cytokines including interleukin-1β,inte rleukin-6,and tumor necrosis factor-a in the culture medium.The LPS-induced mic roglial release of inflammatory cytokines was enhanced by TREML2 overexpression and was attenuated by TREML2 knoc kdown.LPS increased the levels of mic roglial M1-type polarization marker inducible nitric oxide synthase.This effect was enhanced by TREML2 overexpression and ameliorated by TREML2 knockdown.Furthermore,the levels of microglial M2-type polarization markers CD206 and ARG1 in the primary microglia were reduced by TREML2 overexpression and elevated by TREML2 knockdown.LPS stimulation increased the levels of NLRP3 in primary microglia.The LPS-induced increase in NLRP3 was further elevated by TREML2 overexpression and alleviated by TREML2 knockdown.In summary,this study provides the first evidence that TREML2 modulates inflammation by regulating microglial polarization and NLRP3 inflammasome activation.These findings reveal the mechanisms by which TREML2 regulates microglial inflammation and suggest that TREML2 inhibition may represent a novel therapeutic strategy for AD.展开更多
Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a gua...Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a guanine nucleotide exchange factor that is related to microglial activation.However,how Vav1 participates in the inflammato ry response after cerebral ischemia/reperfusion inj ury remains unclea r.In this study,we subjected rats to occlusion and repe rfusion of the middle cerebral artery and subjected the BV-2 mic roglia cell line to oxygen-glucose deprivatio n/reoxygenation to mimic cerebral ischemia/repe rfusion in vivo and in vitro,respectively.We found that Vav1 levels were increased in the brain tissue of rats subjected to occlusion and reperfusion of the middle cerebral arte ry and in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation.Silencing Vav1 reduced the cerebral infarct volume and brain water content,inhibited neuronal loss and apoptosis in the ischemic penumbra,and im p roved neurological function in rats subjected to occlusion and repe rfusion of the middle cerebral artery.Further analysis showed that Vav1 was almost exclusively localized to microglia and that Vav1 downregulation inhibited microglial activation and the NOD-like receptor pyrin 3(NLRP3) inflammasome in the ischemic penumbra,as well as the expression of inflammato ry facto rs.In addition,Vov1 knoc kdown decreased the inflammatory response exhibited by BV-2 cells after oxygen-glucose deprivation/reoxyge nation.Taken together,these findings show that silencing Vav1 attenuates inflammation and neuronal apoptosis in rats subjected to cerebral ischemia/repe rfusion through inhibiting the activation of mic roglia and NLRP3 inflammasome.展开更多
Although the etiology of inflammatory bowel disease is still tmcertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated...Although the etiology of inflammatory bowel disease is still tmcertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated from Radix Linderae, has previously been demonstrated to inhibit inflammation and IL-1,8 production. The present study was to examine the effect of NOR on colitis and the underlying mechanism related to NLRP3 inflammasome activation. Our results showed that NOR alleviated colitis symptom in mice induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Moreover, it significantly reduced expressions of cleaved IL-lfl, NLRP3 and cleaved Caspase-1 but not ASC in colons of mice. In THP-1 cells, NOR suppressed the expressions of NLRP3, cleaved Caspase-1 and cleaved IL-1β but not ASC induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Furthermore, NOR could activate aryl hydrocarbon receptor (AhR) in THP-1 cells, inducing CYP1A1 mRNA expression, and promoting dissociation of AhR/HSP90 complexes, association of AhR and ARNT, AhR nuclear translocation, XRE reporter activity and binding activity of AhR/ARNT/XRE. Both siAhR and a-naphthoflavone (a-NF) markedly diminished the inhibition of NOR on NLRP3 inflammasome activation. In addition, NOR elevated Nrf2 level and reduced ROS level in LPS- and ATP-stimulated THP-1 cells, which was reversed by either siAhR or α-NF treatment. Finally, correlations between activation of AhR and attenuation of colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 level in colons were validated in mice with TNBS-induced colitis. Taken together, NOR ameliorated TNBS-induced colitis in mice through inhibiting NLRP3 inflammasome activation via regulating AhR/Nrf2/ROS signaling pathway.展开更多
代谢性疾病是由体内氨基酸、葡萄糖和脂质代谢紊乱引起的一类疾病,慢性炎症反应是其重要特征之一.Nod样受体蛋白3(Nod-like receptor protein 3,NLRP3)炎性体是位于细胞内的一种蛋白质复合体,主要功能为活化半胱氨酸天冬氨酸蛋白酶1(cas...代谢性疾病是由体内氨基酸、葡萄糖和脂质代谢紊乱引起的一类疾病,慢性炎症反应是其重要特征之一.Nod样受体蛋白3(Nod-like receptor protein 3,NLRP3)炎性体是位于细胞内的一种蛋白质复合体,主要功能为活化半胱氨酸天冬氨酸蛋白酶1(caspase-1)以间接调控白介素1β(IL-1β)、IL-18和IL-33等的成熟和分泌.NLRP3炎性体是炎性体相关研究的热点,多种内源性或外源性危险信号通过激活这一蛋白质复合体上调炎性因子的表达水平,从而促进多种代谢性疾病的发生发展.本文对NLRP3炎性体的结构、功能、调节以及在代谢性疾病中的作用做一综述,以期为代谢性疾病的防治提供新靶点.展开更多
The NLRP3 inflammasome plays a crucial role in innate immune-mediated inflammation and contributes to the pathogenesis of multiple autoinflammatory,metabolic and neurodegenerative diseases,but medications targeting th...The NLRP3 inflammasome plays a crucial role in innate immune-mediated inflammation and contributes to the pathogenesis of multiple autoinflammatory,metabolic and neurodegenerative diseases,but medications targeting the NLRP3 inflammasome are not available for clinical use.RRx-001 is a well-tolerated anticancer agent currently being investigated in phase III clinical trials,but its effects on inflammatory diseases are not known.Here,we show that RRx-001 is a highly selective and potent NLRP3 inhibitor that has strong beneficial effects on NLRP3-driven inflammatory diseases.RRx-001 inhibits the activation of the canonical,noncanonical,and alternative NLRP3 inflammasomes but not the AIM2,NLRC4 or Pyrin inflammasomes.Mechanistically,RRx-001 covalently binds to cysteine 409 of NLRP3 via its bromoacetyl group and therefore blocks the NLRP3-NEK7 interaction,which is critical for the assembly and activation of the NLRP3 inflammasome.More importantly,RRx-001 treatment attenuates the symptoms of lipopolysaccharide(LPS)-induced systemic inflammation,dextran sulfate sodium(DSS)-induced colitis and experimental autoimmune encephalomyelitis(EAE)in mice.Thus,our study identifies RRx-001 as a new potential therapeutic agent for NLRP3-driven diseases.展开更多
TMEM16F is involved in many physiological processes such as blood coagulation,cell membrane fusion and bone mineralization.Activation of TMEM16F has been studied in various central nervous system diseases.High TMEM16F...TMEM16F is involved in many physiological processes such as blood coagulation,cell membrane fusion and bone mineralization.Activation of TMEM16F has been studied in various central nervous system diseases.High TMEM16F level has been also found to participate in microglial phagocytosis and transformation.Microglia-mediated neuroinflammation is a key factor in promoting the progression of Alzheimer’s disease.However,few studies have examined the effects of TMEM16F on neuroinflammation in Alzheimer’s disease.In this study,we established TMEM16F-knockdown AD model in vitro and in vivo to investigate the underlying regulatory mechanism about TMEM16F-mediated neuroinflammation in AD.We performed a Morris water maze test to evaluate the spatial memory ability of animals and detected markers for the microglia M1/M2 phenotype and NLRP3 inflammasome.Our results showed that TMEM16F was elevated in 9-month-old APP/PS1 mice.After TMEM16F knockdown in mice,spatial memory ability was improved,microglia polarization to the M2 phenotype was promoted,NLRP3 inflammasome activation was inhibited,cell apoptosis and Aβplaque deposition in brain tissue were reduced,and brain injury was alleviated.We used amyloid-beta(Aβ_(25-35))to stimulate human microglia to construct microglia models of Alzheimer’s disease.The levels of TMEM16F,inducible nitric oxide synthase(iNOS),proinflammatory cytokines and NLRP3 inflammasome-associated biomarkers were higher in Aβ_(25-35) treated group compared with that in the control group.TMEM16F knockdown enhanced the expression of the M2 phenotype biomarkers Arg1 and Socs3,reduced the release of proinflammatory factors interleukin-1,interleukin-6 and tumor necrosis factor-α,and inhibited NLRP3 inflammasome activation through reducing downstream proinflammatory factors interleukin-1βand interleukin-18.This inhibitory effect of TMEM16F knockdown on M1 microglia was partially reversed by the NLRP3 agonist Nigericin.Our findings suggest that TMEM16F participates in neuroinflammation in Alzheimer’s disease through participating in polarization of microglia and activation of the NLRP3 inflammasome.These results indicate that TMEM16F inhibition may be a potential therapeutic approach for Alzheimer’s disease treatment.展开更多
文摘Inflammasomes are multiprotein intracellular complexes which are responsible for the activation of inflammatory responses. Among various subtypes of inflammasomes, NLRP3 has been a subject of intensive investigation. NLRP3 is considered to be a sensor of microbial and other danger signals and plays a crucial role in mucosal immune responses, promoting the maturation of proinflammatory cytokines interleukin 1β(IL-1β) and IL-18. NLRP3 inflammasome has been associated with a variety of inflammatory and autoimmune conditions, including inflammatory bowel diseases(IBD). The role of NLRP3 in IBD is not yet fully elucidated as it seems to demonstrate both pathogenic and protective effects. Studies have shown a relationship between genetic variants and mutations in NLRP3 gene with IBD pathogenesis. A complex interaction between the NLRP3 inflammasome and the mucosal immune response has been reported. Activation of the inflammasome is a key function mediated by the innate immune response and in parallel the signaling through IL-1β and IL-18 is implicated in adaptive immunity. Further research is needed to delineate the precise mechanisms of NLRP3 function in regulating immune responses. Targeting NLRP3 inflammasome and its downstream signaling will provide new insights into the development of future therapeutic strategies.
基金funding support from the China Postdoctoral Science Foundation Grant (No. 2018M632973)Sichuan Science and Technology Program (No. 2018JY0388)+3 种基金the First-Class Open Fund for Integrated Chinese and Western Medicine (No. 2018ZXYJH05)Traditional Chinese Medicine First-Class Discipline Open Fund (No. 2018ZYX57)the Construction Project of the Hunan Engineering Technology Research Center for the Prevention and Treatment of Otorhinolaryngologic Diseases and Protection of Visual Function with Chinese Medicine (No. 2018YGC02 and No. 2018YGC04)the Research and Innovation Project of Graduate Students in Hunan Province (No. CX20190538)
文摘Objective To investigate the effect and mechanism of linarin(LA) in an experimental dry eye model.Methods LA or vehicle was applied in two dry eye models: an in vitro hyperosmotic stress model and an in vivo desiccating stress(DS) murine model. The viability of human corneal epithelial cells(HCECs) was measured using a cell counting kit(CCK-8).Tear secretion was assessed using the phenol red cotton test. The tear break-up time(TBUT) was recorded using 0.1% liquid fluorescein sodium. Corneal epithelial permeability was evaluated through Oregon green dextran(OGD) staining.Conjunctival goblet cells were counted using periodic acid-Schiff(PAS) staining. Terminal deoxynucleotidyl transfer d UTP nickend labeling(TUNEL) staining was used to quantify apoptotic cells in both models. The expression of Ki-67 was measured in HCECs in the cell model while that of matrix metalloproteinase(MMP)-3 and-9 was measured in the murine model through immunofluorescence staining. Real-time quantitative PCR(RTqPCR) was performed to assess the expression of MMP-3 and MMP-9 in the corneal epithelium and NLRP3, ASC, Caspase-1,interleukin(IL)-1β, IL-18, and tumor necrosis factor(TNF)-α in the conjunctiva. The protein expression levels of NLRP3, ASC,Caspase-1, IL-1β, and IL-18 in the conjunctiva were assessed via Western blot.Results In the in vitro model, treatment of HCECs with LA showed no toxicity, increased proliferation, and reduced apoptosis. In the murine model, compared to the control, LA significantly increased tear production and TBUT, improved OGD staining, and increased the number of goblet cells. Topical treatment of LA to mice provided decreased expression of MMP-3, MMP-9, TNF-α, and apoptotic corneal epithelium. Topical administration of LA also suppressed the NLRP3 inflammasome in the dry eye disease(DED) murine model by decreasing the expression of NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in the conjunctiva.Conclusion Our findings support the safety and efficacy of LA in the treatment of DED. LA alleviated corneal epithelial damage and suppressed NLRP3 inflammasome-mediated immunity in the conjunctiva in a murine model of DED.
基金supported by the National Natural Science Foundation of china,No.81974156(to TJ)the Natural Science Foundation of Jiangsu Province,No.BK20201117(to YDZ)。
文摘Triggering receptor expressed on myeloid cells-like 2(TREML2)is a newly identified susceptibility gene for Alzheimer's disease(AD).It encodes a microglial inflammation-associated receptor.To date,the potential role of mic roglial TREML2 in neuroinflammation in the context of AD remains unclear.In this study,APP/PS1 mice were used to investigate the dynamic changes of TREML2 levels in brain during AD progression.In addition,lipopolysaccharide(LPS)stimulation of primary microglia as well as a lentivirus-mediated TREML2 overexpression and knockdown were employed to explore the role of TREML2 in neuroinflammation in the context of AD.Our res ults show that TREML2 levels gradually increased in the brains of AP P/PS1 mice during disease progression.LPS stimulation of primary microglia led to the release of inflammato ry cytokines including interleukin-1β,inte rleukin-6,and tumor necrosis factor-a in the culture medium.The LPS-induced mic roglial release of inflammatory cytokines was enhanced by TREML2 overexpression and was attenuated by TREML2 knoc kdown.LPS increased the levels of mic roglial M1-type polarization marker inducible nitric oxide synthase.This effect was enhanced by TREML2 overexpression and ameliorated by TREML2 knockdown.Furthermore,the levels of microglial M2-type polarization markers CD206 and ARG1 in the primary microglia were reduced by TREML2 overexpression and elevated by TREML2 knockdown.LPS stimulation increased the levels of NLRP3 in primary microglia.The LPS-induced increase in NLRP3 was further elevated by TREML2 overexpression and alleviated by TREML2 knockdown.In summary,this study provides the first evidence that TREML2 modulates inflammation by regulating microglial polarization and NLRP3 inflammasome activation.These findings reveal the mechanisms by which TREML2 regulates microglial inflammation and suggest that TREML2 inhibition may represent a novel therapeutic strategy for AD.
基金Natural Science Foundation of Liaoning Province (General Program),No.2017010825 (to JQ)。
文摘Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a guanine nucleotide exchange factor that is related to microglial activation.However,how Vav1 participates in the inflammato ry response after cerebral ischemia/reperfusion inj ury remains unclea r.In this study,we subjected rats to occlusion and repe rfusion of the middle cerebral artery and subjected the BV-2 mic roglia cell line to oxygen-glucose deprivatio n/reoxygenation to mimic cerebral ischemia/repe rfusion in vivo and in vitro,respectively.We found that Vav1 levels were increased in the brain tissue of rats subjected to occlusion and reperfusion of the middle cerebral arte ry and in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation.Silencing Vav1 reduced the cerebral infarct volume and brain water content,inhibited neuronal loss and apoptosis in the ischemic penumbra,and im p roved neurological function in rats subjected to occlusion and repe rfusion of the middle cerebral artery.Further analysis showed that Vav1 was almost exclusively localized to microglia and that Vav1 downregulation inhibited microglial activation and the NOD-like receptor pyrin 3(NLRP3) inflammasome in the ischemic penumbra,as well as the expression of inflammato ry facto rs.In addition,Vov1 knoc kdown decreased the inflammatory response exhibited by BV-2 cells after oxygen-glucose deprivation/reoxyge nation.Taken together,these findings show that silencing Vav1 attenuates inflammation and neuronal apoptosis in rats subjected to cerebral ischemia/repe rfusion through inhibiting the activation of mic roglia and NLRP3 inflammasome.
基金supported by the Natural Science Foundation of Jiangsu Province of China(No.BK20140662)partially supported by the National Natural Science Foundation of China(No.81503319)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Although the etiology of inflammatory bowel disease is still tmcertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated from Radix Linderae, has previously been demonstrated to inhibit inflammation and IL-1,8 production. The present study was to examine the effect of NOR on colitis and the underlying mechanism related to NLRP3 inflammasome activation. Our results showed that NOR alleviated colitis symptom in mice induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Moreover, it significantly reduced expressions of cleaved IL-lfl, NLRP3 and cleaved Caspase-1 but not ASC in colons of mice. In THP-1 cells, NOR suppressed the expressions of NLRP3, cleaved Caspase-1 and cleaved IL-1β but not ASC induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Furthermore, NOR could activate aryl hydrocarbon receptor (AhR) in THP-1 cells, inducing CYP1A1 mRNA expression, and promoting dissociation of AhR/HSP90 complexes, association of AhR and ARNT, AhR nuclear translocation, XRE reporter activity and binding activity of AhR/ARNT/XRE. Both siAhR and a-naphthoflavone (a-NF) markedly diminished the inhibition of NOR on NLRP3 inflammasome activation. In addition, NOR elevated Nrf2 level and reduced ROS level in LPS- and ATP-stimulated THP-1 cells, which was reversed by either siAhR or α-NF treatment. Finally, correlations between activation of AhR and attenuation of colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 level in colons were validated in mice with TNBS-induced colitis. Taken together, NOR ameliorated TNBS-induced colitis in mice through inhibiting NLRP3 inflammasome activation via regulating AhR/Nrf2/ROS signaling pathway.
文摘代谢性疾病是由体内氨基酸、葡萄糖和脂质代谢紊乱引起的一类疾病,慢性炎症反应是其重要特征之一.Nod样受体蛋白3(Nod-like receptor protein 3,NLRP3)炎性体是位于细胞内的一种蛋白质复合体,主要功能为活化半胱氨酸天冬氨酸蛋白酶1(caspase-1)以间接调控白介素1β(IL-1β)、IL-18和IL-33等的成熟和分泌.NLRP3炎性体是炎性体相关研究的热点,多种内源性或外源性危险信号通过激活这一蛋白质复合体上调炎性因子的表达水平,从而促进多种代谢性疾病的发生发展.本文对NLRP3炎性体的结构、功能、调节以及在代谢性疾病中的作用做一综述,以期为代谢性疾病的防治提供新靶点.
基金supported by the National Key Research and Development Program of China(grant numbers 2019YFA0508503 and 2020YFA0509101)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant number XDB29030102)+2 种基金the National Natural Science Foundation of China(grant numbers 82003765,81821001,31770991,and 91742202)the Fundamental Research Funds for the Central Universities and the University Synergy Innovation Program of Anhui Province(GXXT-2019-026)the Natural Science Foundation of Anhui Province(1908085QC99).
文摘The NLRP3 inflammasome plays a crucial role in innate immune-mediated inflammation and contributes to the pathogenesis of multiple autoinflammatory,metabolic and neurodegenerative diseases,but medications targeting the NLRP3 inflammasome are not available for clinical use.RRx-001 is a well-tolerated anticancer agent currently being investigated in phase III clinical trials,but its effects on inflammatory diseases are not known.Here,we show that RRx-001 is a highly selective and potent NLRP3 inhibitor that has strong beneficial effects on NLRP3-driven inflammatory diseases.RRx-001 inhibits the activation of the canonical,noncanonical,and alternative NLRP3 inflammasomes but not the AIM2,NLRC4 or Pyrin inflammasomes.Mechanistically,RRx-001 covalently binds to cysteine 409 of NLRP3 via its bromoacetyl group and therefore blocks the NLRP3-NEK7 interaction,which is critical for the assembly and activation of the NLRP3 inflammasome.More importantly,RRx-001 treatment attenuates the symptoms of lipopolysaccharide(LPS)-induced systemic inflammation,dextran sulfate sodium(DSS)-induced colitis and experimental autoimmune encephalomyelitis(EAE)in mice.Thus,our study identifies RRx-001 as a new potential therapeutic agent for NLRP3-driven diseases.
基金supported by the National Natural Science Foundation of China,No.82072941(to QHX)Liaoning Province Key R&D Program Guidance Project,No.2020JH2/10300044Science and Technology Plan Project of Shenyang,No.20-205-4-050(both to XHS)。
文摘TMEM16F is involved in many physiological processes such as blood coagulation,cell membrane fusion and bone mineralization.Activation of TMEM16F has been studied in various central nervous system diseases.High TMEM16F level has been also found to participate in microglial phagocytosis and transformation.Microglia-mediated neuroinflammation is a key factor in promoting the progression of Alzheimer’s disease.However,few studies have examined the effects of TMEM16F on neuroinflammation in Alzheimer’s disease.In this study,we established TMEM16F-knockdown AD model in vitro and in vivo to investigate the underlying regulatory mechanism about TMEM16F-mediated neuroinflammation in AD.We performed a Morris water maze test to evaluate the spatial memory ability of animals and detected markers for the microglia M1/M2 phenotype and NLRP3 inflammasome.Our results showed that TMEM16F was elevated in 9-month-old APP/PS1 mice.After TMEM16F knockdown in mice,spatial memory ability was improved,microglia polarization to the M2 phenotype was promoted,NLRP3 inflammasome activation was inhibited,cell apoptosis and Aβplaque deposition in brain tissue were reduced,and brain injury was alleviated.We used amyloid-beta(Aβ_(25-35))to stimulate human microglia to construct microglia models of Alzheimer’s disease.The levels of TMEM16F,inducible nitric oxide synthase(iNOS),proinflammatory cytokines and NLRP3 inflammasome-associated biomarkers were higher in Aβ_(25-35) treated group compared with that in the control group.TMEM16F knockdown enhanced the expression of the M2 phenotype biomarkers Arg1 and Socs3,reduced the release of proinflammatory factors interleukin-1,interleukin-6 and tumor necrosis factor-α,and inhibited NLRP3 inflammasome activation through reducing downstream proinflammatory factors interleukin-1βand interleukin-18.This inhibitory effect of TMEM16F knockdown on M1 microglia was partially reversed by the NLRP3 agonist Nigericin.Our findings suggest that TMEM16F participates in neuroinflammation in Alzheimer’s disease through participating in polarization of microglia and activation of the NLRP3 inflammasome.These results indicate that TMEM16F inhibition may be a potential therapeutic approach for Alzheimer’s disease treatment.