The liver injury leads to an inflammatory response, which causes the activation of hepatic stellate cells (HSCs) that further secrete ECM proteins and play an important role in liver fibrosis. Moreover, the inflammato...The liver injury leads to an inflammatory response, which causes the activation of hepatic stellate cells (HSCs) that further secrete ECM proteins and play an important role in liver fibrosis. Moreover, the inflammatory response is a driving force for fibrogenesis, which is triggered by many types of injuries. Exaggerated inflammatory immune responses are mediated by cytoplasmic protein complexes known as inflammasomes, which are involved in many chronic liver diseases. Inflammasomes are pattern recognition receptors (PRRs) that can sense any microbial motifs known as pathogen-associated molecular patterns (PAMPs), and host- or environmental-derived stress signals known as damage-associated molecular patterns (DAMPs). The inflammasomes cause caspase-mediated proteolytic cleavage of pro-IL-1β and pro-IL-18 into active IL-1β and IL-18. In this review, we provide a comprehensive summary of the important roles of NLRP3 inflammasome in the pathogenesis of liver fibrosis with an emphasis on several direct and indirect pathways responsible for the NLRP3 inflammasome-mediated HSCs activation and fibrogenesis. In addition, we discuss the general pharmacological and genetics strategies for the inhibition of NLRP3 inflammasome activation and its downstream signaling with examples of emerging pharmacotherapeutics, targeting the NLRP3 inflammasome signaling as well as a possible way to develop effective and safer NLRP3 inflammasome inhibitors.展开更多
炎症反应是机体常见的生理、病理活动,炎症小体在该反应中发挥重要调控作用。核苷酸结合寡聚化结构域样受体蛋白3(NOD-like receptor protein 3,NLRP3)是炎症小体中关键的调控蛋白之一。研究发现激活NLRP3的刺激因子及其相关分子调控信...炎症反应是机体常见的生理、病理活动,炎症小体在该反应中发挥重要调控作用。核苷酸结合寡聚化结构域样受体蛋白3(NOD-like receptor protein 3,NLRP3)是炎症小体中关键的调控蛋白之一。研究发现激活NLRP3的刺激因子及其相关分子调控信号通路与多种疾病的发生、发展密切相关,并越来越受到广泛关注,是临床药物研究开发的前沿热点方向。总结NLRP3炎症小体的生物结构、调控功能、信号通路和作用机制等研究进展,并梳理与其相关靶点抑制剂的研究结果,对开展炎症相关疾病的新靶标药物发现及其临床应用研究具有重要的参考价值。展开更多
文摘The liver injury leads to an inflammatory response, which causes the activation of hepatic stellate cells (HSCs) that further secrete ECM proteins and play an important role in liver fibrosis. Moreover, the inflammatory response is a driving force for fibrogenesis, which is triggered by many types of injuries. Exaggerated inflammatory immune responses are mediated by cytoplasmic protein complexes known as inflammasomes, which are involved in many chronic liver diseases. Inflammasomes are pattern recognition receptors (PRRs) that can sense any microbial motifs known as pathogen-associated molecular patterns (PAMPs), and host- or environmental-derived stress signals known as damage-associated molecular patterns (DAMPs). The inflammasomes cause caspase-mediated proteolytic cleavage of pro-IL-1β and pro-IL-18 into active IL-1β and IL-18. In this review, we provide a comprehensive summary of the important roles of NLRP3 inflammasome in the pathogenesis of liver fibrosis with an emphasis on several direct and indirect pathways responsible for the NLRP3 inflammasome-mediated HSCs activation and fibrogenesis. In addition, we discuss the general pharmacological and genetics strategies for the inhibition of NLRP3 inflammasome activation and its downstream signaling with examples of emerging pharmacotherapeutics, targeting the NLRP3 inflammasome signaling as well as a possible way to develop effective and safer NLRP3 inflammasome inhibitors.
文摘炎症反应是机体常见的生理、病理活动,炎症小体在该反应中发挥重要调控作用。核苷酸结合寡聚化结构域样受体蛋白3(NOD-like receptor protein 3,NLRP3)是炎症小体中关键的调控蛋白之一。研究发现激活NLRP3的刺激因子及其相关分子调控信号通路与多种疾病的发生、发展密切相关,并越来越受到广泛关注,是临床药物研究开发的前沿热点方向。总结NLRP3炎症小体的生物结构、调控功能、信号通路和作用机制等研究进展,并梳理与其相关靶点抑制剂的研究结果,对开展炎症相关疾病的新靶标药物发现及其临床应用研究具有重要的参考价值。