We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate,...We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate, which shows great potential for application in the high-power ultrawideband electromagnetic effect, etc. The influence of incident pulse parameters(rise time and voltage amplitude) and line length on the sharpening characteristics of the GNLTL were investigated experimentally to optimize the rising rate of the modulated pulse front. Based on the GNLTL equivalent circuit model consisting of an LC ladder network, the rise time, the voltage conversion coefficient and the rising rate properties of a modulated pulse were also numerically analyzed in a wider range. The results show that a?>?90 k V RF pulse with a rise time of 350 ps and a repetition rate of 1 kHz in burst mode is produced by the GNLTL at an axial biasing magnetic field of 22 kA m^-1 and a line length of 30 cm under the condition of a 70 kV incident pulse. Applying a faster and higher incident pulse is conducive to improving the sharpening effect of the GNLTL. Furthermore, within a certain range, increasing the line length of the GNLTL not only reduces the rise time, but increases the voltage conversion coefficient and the rising rate of a modulated pulse. Furthermore, considering the energy loss of ferrite rings, there is an optimal line length to obtain the fastest rising rate of a modulated pulse front edge.展开更多
A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transm...A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μm2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.展开更多
The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, w...The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, which is based on right-handed nonlinear transmission lines and consists of a coplanar waveguide transmission line and periodically distributed GaAs planar Schottky varactor diode. The distributed-Schottky transmission-line-type phase shifter at a bias voltage greater than 1.5 V presents a continuous 0°–360° differential phase shift over a frequency range from 0 to 33 GHz. It is demonstrated that the minimum insertion loss is about 0.5 dB and that the return loss is less than-10 dB over the frequency band of 0–33 GHz at a reverse bias voltage less than 4.5 V. These excellent characteristics, such as broad differential phase shift, low insertion loss, and return loss, indicate that the proposed phase shifter can entirely be integrated into a phased array radar circuit.展开更多
The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high...The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39,6 GHz LH NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD.展开更多
The nonlinear properties of lattice network-based(LNB) composite right-/left-handed transmission lines(CRLH TLs)with nonlinear capacitors are experimentally investigated.Harmonic generation,subharmonic generation,...The nonlinear properties of lattice network-based(LNB) composite right-/left-handed transmission lines(CRLH TLs)with nonlinear capacitors are experimentally investigated.Harmonic generation,subharmonic generation,and parametric excitation are clearly observed in an unbalanced LNB CRLH TL separately.While the balanced design of the novel nonlinear TL shows that the subharmonic generation and parametric processes can be suppressed,and almost the same power level of the higher harmonics can be achieved over a wide bandwidth range,which are difficult to find in conventional CRLH TLs.展开更多
We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve ...We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.展开更多
A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first...A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first, and is transformed into a set of first-order differential equations of voltage and current with respect to time. By integrating these differential equations with respect to time, and precise computation, the solution of these differential equations can be obtained. This method can solve the transient response of various kinds of transmission lines with arbitrary terminal networks. Particularly, it can analyze the nonuniform lines with initial conditions, for which there is no existing effective method to analyze the time response so far. The results obtained with this method are stable and accurate. Two examples are given to illustrate the application of this method.展开更多
In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point...In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.展开更多
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca...In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.展开更多
The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stro...The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents.The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed.Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly,while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.展开更多
The phenomenon of energy unidirectionM transmission is numerically investigated by using a system of two coupled discrete nonlinear electrical transmission lines, each line of the network contains a finite number of c...The phenomenon of energy unidirectionM transmission is numerically investigated by using a system of two coupled discrete nonlinear electrical transmission lines, each line of the network contains a finite number of cells and has different pass band structures, respectively. Using numerical simulations, we examine the frequency multiplication of the driving frequency and the lattice filtering effect in the line. These lead to the generation of energy unidirectional transmission. In the present work, energy is carried by the second harmonic wave in the pass band. In addition, we also study the dependence of the energy efficiency on the driving amplitude and other parameters of the model, such as the system size and the nonlinear coefficient, by calculation. Furthermore, after detailed numerical simulation, an experimental demonstration is realized. The experimental results agree with those in simulation qualitatively.展开更多
We numerically investigate the excitation of soliton waves in the nonlinear electrical transmission line formed by many cells. When the periodic driving voltage with frequency in the pass band closing to the cutoff fr...We numerically investigate the excitation of soliton waves in the nonlinear electrical transmission line formed by many cells. When the periodic driving voltage with frequency in the pass band closing to the cutoff frequency is applied to the endpoint of the whole line, the soliton wave can be generated. The numerical results show that the soliton wave generation mainly depends on the self modulation associated with the nonlinear effect. In this study, the lower subharmonic component is also observed in the frequency spectrum. To further understand this phenomenon, we study the dependence of the subharmonic power spectrum and frequency on the forcing amplitude and frequency numerically, and find that the subharmonic frequency increases with the gradual growth of the driving amplitude.展开更多
The paper deals with a lossy transmission line terminated at both ends by non-linear RCL elements. The mixed problem for the hyperbolic system, describing the transmission line, to an initial value problem for a neutr...The paper deals with a lossy transmission line terminated at both ends by non-linear RCL elements. The mixed problem for the hyperbolic system, describing the transmission line, to an initial value problem for a neutral equation is reduced. Sufficient conditions for the existence and uniqueness of periodic regimes are formulated. The proof is based on the finding out of suitable operator whose fixed point is a periodic solution of the neutral equation. The method has a good rate of convergence of the successive approximations even for high frequencies.展开更多
We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the ...We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the wave to spread in electrical transmission lines(s-tfETL),the time fractional complex Schrödinger(tfcS),and the space-time M-fractional Schrödinger-Hirota(s-tM-fSH)models to verify the effectiveness of the proposed approach.The implementing of the introduced new technique based on the models provides us with periodic envelope,exponentially changeable soliton envelope,rational rogue wave,periodic rogue wave,combo periodic-soliton,and combo rational-soliton solutions,which are much interesting phenomena in nonlinear sciences.Thus the results disclose that the proposed technique is very effective and straight-forward,and such solutions of the models are much more fruitful than those from the generalized Kudryashov and the modified Kudryashov methods.展开更多
基金supported by the China Postdoctoral Science Foundation (No. 2018M6335598)
文摘We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate, which shows great potential for application in the high-power ultrawideband electromagnetic effect, etc. The influence of incident pulse parameters(rise time and voltage amplitude) and line length on the sharpening characteristics of the GNLTL were investigated experimentally to optimize the rising rate of the modulated pulse front. Based on the GNLTL equivalent circuit model consisting of an LC ladder network, the rise time, the voltage conversion coefficient and the rising rate properties of a modulated pulse were also numerically analyzed in a wider range. The results show that a?>?90 k V RF pulse with a rise time of 350 ps and a repetition rate of 1 kHz in burst mode is produced by the GNLTL at an axial biasing magnetic field of 22 kA m^-1 and a line length of 30 cm under the condition of a 70 kV incident pulse. Applying a faster and higher incident pulse is conducive to improving the sharpening effect of the GNLTL. Furthermore, within a certain range, increasing the line length of the GNLTL not only reduces the rise time, but increases the voltage conversion coefficient and the rising rate of a modulated pulse. Furthermore, considering the energy loss of ferrite rings, there is an optimal line length to obtain the fastest rising rate of a modulated pulse front edge.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60806024)the Fundamental Research Funds for Central Universities, China (Grant No. XDJK2009C020)the Singapore–China Joint Research Project (Grant No. 2009DFA12130)
文摘A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μm2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.
基金Project supported by the Fundamental Research Funds for Central Universities,China(Grant No.XDJK2013B004)the Research Fund for the Doctoral Program of Southwest University,China(Grant No.SWU111030)the State Key Laboratory for Millimeter Waves of Southeast University,China(Grant No.K201312)
文摘The epitaxial material, device structure, and corresponding equivalent large signal circuit model of GaAs planar Schottky varactor diode are successfully developed to design and fabricate a monolithic phase shifter, which is based on right-handed nonlinear transmission lines and consists of a coplanar waveguide transmission line and periodically distributed GaAs planar Schottky varactor diode. The distributed-Schottky transmission-line-type phase shifter at a bias voltage greater than 1.5 V presents a continuous 0°–360° differential phase shift over a frequency range from 0 to 33 GHz. It is demonstrated that the minimum insertion loss is about 0.5 dB and that the return loss is less than-10 dB over the frequency band of 0–33 GHz at a reverse bias voltage less than 4.5 V. These excellent characteristics, such as broad differential phase shift, low insertion loss, and return loss, indicate that the proposed phase shifter can entirely be integrated into a phased array radar circuit.
基金Project supported by the National Scientific Major Projects of China (Grant No. 2011ZX03004-001-02)the National Natural Science Foundation of China (Grant No. 60806024)
文摘The left-handed nonlinear transmission line (LH-NLTL) based on monolithic microwave integrated circuit (MMIC) technology possesses significant advantages such as wide frequency band, high operating frequency, high conversion efficiency, and applications in millimeter and submillimeter wave frequency multiplier. The planar Schottky varactor diode (PSVD) is a major limitation to the performance of the LH-NLTL frequency multiplier as a nonlinear component. The design and the fabrication of the diode for such an application are presented. An accurate large-signal model of the diode is proposed. A 16 GHz-39,6 GHz LH NLTL frequency doubler using our large-signal model is reported for the first time. The measured maximum output powers of the 2nd harmonic are up to 8 dBm at 26.4 GHz, and above 0 dBm from 16 GHz to 39.6 GHz when the input power is 20 dBm. The application of the LH-NLTL frequency doubler furthermore validates the accuracy of the large-signal model of the PSVD.
基金supported by the National Natural Science Foundation of China(Grant Nos.61201030,60990322,and 60990320)the China Postdoctoral Science Foundation(Grant No.2012M521048)the Collegiate Natural Science Fund of Jiangsu Province,China(Grant No.12KJB140010)
文摘The nonlinear properties of lattice network-based(LNB) composite right-/left-handed transmission lines(CRLH TLs)with nonlinear capacitors are experimentally investigated.Harmonic generation,subharmonic generation,and parametric excitation are clearly observed in an unbalanced LNB CRLH TL separately.While the balanced design of the novel nonlinear TL shows that the subharmonic generation and parametric processes can be suppressed,and almost the same power level of the higher harmonics can be achieved over a wide bandwidth range,which are difficult to find in conventional CRLH TLs.
基金supported by the Scientific Commission/ENS/University of Maroua 2013AM is grateful to the Abdus Salam International Center for Theoretical Physics(ICTP),Trieste,Italy through the Associate Program for financial support
文摘We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.
文摘A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first, and is transformed into a set of first-order differential equations of voltage and current with respect to time. By integrating these differential equations with respect to time, and precise computation, the solution of these differential equations can be obtained. This method can solve the transient response of various kinds of transmission lines with arbitrary terminal networks. Particularly, it can analyze the nonuniform lines with initial conditions, for which there is no existing effective method to analyze the time response so far. The results obtained with this method are stable and accurate. Two examples are given to illustrate the application of this method.
基金The National Natural Science Foundation of China (No.51308193)China Postdoctoral Science Foundation (No.20110491342)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101018C)the Science and Technology Project of State Grid Corporation of China(No.SGKJ[2007]116)
文摘In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.
基金Project(51308193)supported by the National Natural Science Foundation of ChinaProject(SGKJ[2007]116)supported by the Science and Technology Program of State Grid Corporation of China
文摘In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.
文摘The paper presents some problems of lightning overvoltage modeling in transmission lines with nonlinear elements.The presented results were obtained mostly for fast front transients of subsequent lightning return stroke currents.The effectiveness of numerical algorithms of nonlinear models and possibilities of their development for such transients are analyzed.Computer simulations carried out by application of EMTP show that nonlinear models of back-flashover and ZnO arresters work properly,while the implemented corona model can not be used for relatively large peak values of subsequent lightning return-stroke currents.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974095 and 10774072)
文摘The phenomenon of energy unidirectionM transmission is numerically investigated by using a system of two coupled discrete nonlinear electrical transmission lines, each line of the network contains a finite number of cells and has different pass band structures, respectively. Using numerical simulations, we examine the frequency multiplication of the driving frequency and the lattice filtering effect in the line. These lead to the generation of energy unidirectional transmission. In the present work, energy is carried by the second harmonic wave in the pass band. In addition, we also study the dependence of the energy efficiency on the driving amplitude and other parameters of the model, such as the system size and the nonlinear coefficient, by calculation. Furthermore, after detailed numerical simulation, an experimental demonstration is realized. The experimental results agree with those in simulation qualitatively.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174145 and 11334005)the Research Foundation for Young Scientists of Anhui University of Technology(Grant No.QZ201318)
文摘We numerically investigate the excitation of soliton waves in the nonlinear electrical transmission line formed by many cells. When the periodic driving voltage with frequency in the pass band closing to the cutoff frequency is applied to the endpoint of the whole line, the soliton wave can be generated. The numerical results show that the soliton wave generation mainly depends on the self modulation associated with the nonlinear effect. In this study, the lower subharmonic component is also observed in the frequency spectrum. To further understand this phenomenon, we study the dependence of the subharmonic power spectrum and frequency on the forcing amplitude and frequency numerically, and find that the subharmonic frequency increases with the gradual growth of the driving amplitude.
文摘The paper deals with a lossy transmission line terminated at both ends by non-linear RCL elements. The mixed problem for the hyperbolic system, describing the transmission line, to an initial value problem for a neutral equation is reduced. Sufficient conditions for the existence and uniqueness of periodic regimes are formulated. The proof is based on the finding out of suitable operator whose fixed point is a periodic solution of the neutral equation. The method has a good rate of convergence of the successive approximations even for high frequencies.
文摘We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the wave to spread in electrical transmission lines(s-tfETL),the time fractional complex Schrödinger(tfcS),and the space-time M-fractional Schrödinger-Hirota(s-tM-fSH)models to verify the effectiveness of the proposed approach.The implementing of the introduced new technique based on the models provides us with periodic envelope,exponentially changeable soliton envelope,rational rogue wave,periodic rogue wave,combo periodic-soliton,and combo rational-soliton solutions,which are much interesting phenomena in nonlinear sciences.Thus the results disclose that the proposed technique is very effective and straight-forward,and such solutions of the models are much more fruitful than those from the generalized Kudryashov and the modified Kudryashov methods.