期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
高比能NMC811/SiO-C软包电池循环失效分析 被引量:2
1
作者 梁大宇 包婷婷 +1 位作者 高田慧 张健 《储能科学与技术》 CAS CSCD 2018年第3期459-464,共6页
NMC811/SiO-C电池由于电极材料克容量高,工作平台电压高成为实现高比能量密度的一个重要途径,然而在实际应用中其循环寿命差的问题一直难以解决。本工作通过电化学阻抗谱(EIS)、X射线衍射光谱、傅里叶红外变换光谱(FTIR)、扫描电子显微... NMC811/SiO-C电池由于电极材料克容量高,工作平台电压高成为实现高比能量密度的一个重要途径,然而在实际应用中其循环寿命差的问题一直难以解决。本工作通过电化学阻抗谱(EIS)、X射线衍射光谱、傅里叶红外变换光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等多种分析表征手段对循环前后电极材料进行了表征测试与分析,系统研究了NMC811/Si O-C电池长期循环失效的原因,结果表明:NMC811正极材料在循环过程中结构保持完整,金属溶出现象轻微;而SiO-C负极材料在循环过程中膨胀粉化,并且不断消耗电解液和形成更厚的SEI膜,最终导致负极克容量衰减严重,是全电池常温循环性能很差的主要原因。 展开更多
关键词 nmc811/sio-c电池 失效机理 表征分析
下载PDF
NF_(3)气相处理提升NMC811电化学性能
2
作者 张子健 汪达 《广州化工》 CAS 2023年第5期30-32,66,共4页
采用三氟化氮(NF_(3))气相处理在NMC811表面产生一层氟化物保护层,能够有效清除电极表面残留锂化物,缓解电极与电解液之间界面副反应,抑制副产物HF对电极材料结构侵蚀,提高电化学性能。气相处理后的正极材料拥有200.5 mAh·g^(-1)... 采用三氟化氮(NF_(3))气相处理在NMC811表面产生一层氟化物保护层,能够有效清除电极表面残留锂化物,缓解电极与电解液之间界面副反应,抑制副产物HF对电极材料结构侵蚀,提高电化学性能。气相处理后的正极材料拥有200.5 mAh·g^(-1)的放电比容量和88.2%的首圈库伦效率,并在100次循环后依旧具有164.4 mAh·g^(-1)的放电比容量和86.9%的容量保持率,性能优于原始NMC811样品。该气相处理法操作简单、高效地提升了NMC811的电化学性能,是一种具有潜力的改性手段。 展开更多
关键词 三氟化氮(NF_(3)) 气相处理 nmc811 改性
下载PDF
多晶及单晶NMC811材料力学性能分析 被引量:1
3
作者 王婷 杨超 +3 位作者 苏红磊 马维 井源 王海龙 《储能科学与技术》 CAS CSCD 北大核心 2022年第11期3478-3486,共9页
力学失效是三元氧化物正极材料在高容量应用时面临的主要问题之一,本工作采用熔盐法和共沉淀法分别制备了单晶和多晶NMC811,通过XRD、FIB-SEM和应力分析等方法对比研究了单晶和多晶NMC811材料在电化学过程中的力学性能及其演化,建立了... 力学失效是三元氧化物正极材料在高容量应用时面临的主要问题之一,本工作采用熔盐法和共沉淀法分别制备了单晶和多晶NMC811,通过XRD、FIB-SEM和应力分析等方法对比研究了单晶和多晶NMC811材料在电化学过程中的力学性能及其演化,建立了单晶及多晶NMC811在充放电过程中的裂纹萌生及扩展与应力应变之间的关系,揭示了脱嵌锂过程中该材料的结构稳定性退化原因。结果表明,单晶NMC811材料在0.5 C下充放电100次后,基本上没有裂纹产生,且材料的残余应力较小。而多晶NMC811材料在0.5 C下充放电100次后,沿晶界产生了大量裂纹且最大残余应力是单晶材料的3倍。分别将两种材料组装成电池,单晶NMC811的循环性能和倍率性能都优于多晶NMC811。制备、发展单晶NMC811材料将成为抑制充放电过程中裂纹扩展,改善高镍三元材料循环寿命的重要途径。 展开更多
关键词 锂离子电池 nmc811 单晶及多晶 应力应变关系
下载PDF
Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO_(3)
4
作者 Fengyu Zhang Yali Liang +6 位作者 Zhangran Ye Lei Deng Yunna Guo Ping Qiu Peng Jia Qiaobao Zhang Liqiang Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期514-518,共5页
Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due t... Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due to the limitations of high-temperature sintering and multi-step calcination,single crystal NMC811 generally shows irregular particles with a size of 2-3μm.However,the prolonged Li-ion diffusion pathway and the stress generated by the uneven de-/intercalation sluggish Li-ion diffusion kinetics,what is more,cause structural damage such as intragranular cracks.A slow Li extraction rate or particle size reduction will ameliorate the structural damage and improve the cycling stability.As the most promising cathodes for next-generation power batteries,NMC811 required fast charge performance and cycle stability.Particle size reduction appears to be the displacement option.Nanonization is an effective strategy to mitigate intragranular cracks of single crystal NMC811.However,the serious aggregation and increased specific surface area become new challenges.In this article,we synthesized monodisperse nanoscale single crystal NMC811 by molten salt method and modified the surface by LiNbO3 coating.The electrochemical performance shows that nanoscale single crystal NMC811 has faster kinetic and higher capacity retention,so the strategy of combining nanonization and surface coating is an alternative way to prepare high specific capacity and cycle stable single crystal NMC811. 展开更多
关键词 Ni-rich nmc811 Molten salt method Nanonization Surface coating Micron cracks
原文传递
Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries
5
作者 Zahra Ahaliabadeh Ville Miikkulainen +7 位作者 Miia Mäntymäki Mattia Colalongo Seyedabolfazl Mousavihashemi Lide Yao Hua Jiang Jouko Lahtinen Timo Kankaanpää Tanja Kallio 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期60-73,共14页
This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experimen... This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experiment was performed at the beamline ID16B of the European Synchrotron Radiation Facility(ESRF),Grenoble,France,in the frame of proposal CH-6644.The patent titled“Stabilized Positive Electrode Material to Enable High Energy and Power Density Lithium-Ion Batteries”(IPD3173)is pertinent to this manuscript.It was filed by Zahra Ahaliabadeh and Tanja Kallio,and the patent rights are held by Aalto University. 展开更多
关键词 degradation mechanisms electrolyte decomposition hybrid coatings lithium-ion battery lithium-ion kinetics molecular layer deposition nmc811
下载PDF
Improved cyclic stability of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) cathode enabled by a novel CEI forming additive
6
作者 Zulipiya SHADIKE Yiming CHEN +3 位作者 Lin LIU Xinyin CAI Shuiyun SHEN Junliang ZHANG 《Frontiers in Energy》 SCIE EI CSCD 2024年第4期535-544,共10页
The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode mat... The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials.Electrolyte optimization is an effective approach to suppress such an adverse side reaction,thereby enhancing the electrochemical properties.Herein,a novel boron-based film forming additive,tris(2,2,2-trifluoroethyl)borate(TTFEB),has been introduced to regulate the interphasial chemistry of LiNi0.8Mn0.1Co0.1O2(NMC811)cathode to improve its long-term cyclability and rate properties.The results of multi-model diagnostic study reveal that formation lithium fluoride(LiF)-rich and boron(B)containing cathode electrolyte interphase(CEI)not only stabilizes cathode surface,but also prevents electrolyte decomposition.Moreover,homogenously distributed B containing species serves as a skeleton to form more uniform and denser CEI,reducing the interphasial resistance.Remarkably,the Li/NMC811 cell with the TTFEB additive delivers an exceptional cycling stability with a high-capacity retention of 72.8%after 350 electrochemical cycles at a 1 C current rate,which is significantly higher than that of the cell cycled in the conventional electrolyte(59.7%).These findings provide a feasible pathway for improving the electrochemical performance of Ni-rich NMCs cathode by regulating the interphasial chemistry. 展开更多
关键词 nmc811 cathode electrolyte interphase film forming additives cyclic stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部