Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposab...Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease ...Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease incidence due to the cost of providing testing for all people in a community on a routine basis. As an alternative to randomly sampling large groups of people to track disease incidence at significant cost, wastewater-based epidemiology (WBE) is a well-established and cost-effective technique to passively measure the prevalence of disease in communities without requiring invasive testing. WBE can also be used as a forecasting tool since the virus is shed in individuals prior to developing symptoms that might otherwise prompt testing. This study applied the WBE approach to understand its effectiveness as a possible forecasting tool by monitoring the SARS-CoV-2 levels in raw wastewater sampled from sewer lift stations at a large public university campus setting including dormitories, academic buildings, and athletic facilities. The WBE analysis was conducted by sampling from building-specific lift stations and enumerating target viral copies using RT-qPCR analysis. The WBE results were compared with the 7-day rolling averages of confirmed infected individuals for the following week after the wastewater sample analysis. In most cases, changes in the WBE outcomes were followed by similar trends in the clinical data. The positive predictive value of the applied WBE approach was 86% for the following week of the sample collection. In contrast, positive correlations between the two data with Spearmen correlation (rs) ranged from 0.16 to 0.36. A stronger correlation (rs = 0.18 to 0.51) was observed when WBE results were compared with COVID-19 cases identified on the next day of the sampling events. The P value of 0.007 for Dorm A suggests high significance, while moderate significance was observed for the other dormitories (B, C, and D). The outcomes of this investigation demonstrate that WBE can be a valuable tool to track the progression of diseases like COVID-19 seven days before diagnostic cases are confirmed, allowing authorities to take necessary measures in advance and also enable authorities to decide to reopen a facility after a quarantine.展开更多
AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:T...AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level.展开更多
Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019(COVID-19),a new,highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)....Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019(COVID-19),a new,highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Consequently,considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2.Methods In this study,a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein(S protein)in human saliva.The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid,and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication.The electrochemical performance of the sensor was evaluated through differential pulse voltammetry.Results Under optimal experimental conditions,the linear range of the sensor was 10-13-10-9 mg/m L,whereas the detection limit was 9.55 fg/mL.Furthermore,the S protein was instilled in artificial saliva as the infected human saliva model,and the sensing platform showed satisfactory detection capability.Conclusion The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein,indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.展开更多
The purpose of this study was to investigate the clinical application of severe acute respiratory distress syndrome coronavirus-2(SARS-CoV-2)specific antibody detection and anti-SARS-CoV-2 specific monoclonal antibodi...The purpose of this study was to investigate the clinical application of severe acute respiratory distress syndrome coronavirus-2(SARS-CoV-2)specific antibody detection and anti-SARS-CoV-2 specific monoclonal antibodies(mAbs)in the treatment of coronavirus infectious disease 2019(COVID-19).The dynamic changes of SARS-CoV-2 specific antibodies during COVID-19 were studied.Immunoglobulin M(IgM)appeared earlier and lasted for a short time,while immunoglobulin G(IgG)appeared later and lasted longer.IgM tests can be used for early diagnosis of COVID-19,and IgG tests can be used for late diagnosis of COVID-19 and identification of asymptomatic infected persons.The combination of antibody testing and nucleic acid testing,which complement each other,can improve the diagnosis rate of COVID-19.Monoclonal anti-SARS-CoV-2 specific antibodies can be used to treat hospitalized severe and critically ill patients and non-hospitalized mild to moderate COVID-19 patients.COVID-19 convalescent plasma,highly concentrated immunoglobulin,and anti-SARS-CoV-2 specific mAbs are examples of anti-SARS-CoV-2 antibody products.Due to the continuous emergence of mutated strains of the novel coronavirus,especially omicron,its immune escape ability and infectivity are enhanced,making the effects of authorized products reduced or invalid.Therefore,the optimal application of anti-SARS-CoV-2 antibody products(especially anti-SARS-CoV-2 specific mAbs)is more effective in the treatment of COVID-19 and more conducive to patient recovery.展开更多
基金supported by National Key R&D Program of China[2021YFC2301103 and 2022YFE0202600]Shenzhen Science and Technology Program[JSGG20220606142605011].
文摘Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
文摘Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease incidence due to the cost of providing testing for all people in a community on a routine basis. As an alternative to randomly sampling large groups of people to track disease incidence at significant cost, wastewater-based epidemiology (WBE) is a well-established and cost-effective technique to passively measure the prevalence of disease in communities without requiring invasive testing. WBE can also be used as a forecasting tool since the virus is shed in individuals prior to developing symptoms that might otherwise prompt testing. This study applied the WBE approach to understand its effectiveness as a possible forecasting tool by monitoring the SARS-CoV-2 levels in raw wastewater sampled from sewer lift stations at a large public university campus setting including dormitories, academic buildings, and athletic facilities. The WBE analysis was conducted by sampling from building-specific lift stations and enumerating target viral copies using RT-qPCR analysis. The WBE results were compared with the 7-day rolling averages of confirmed infected individuals for the following week after the wastewater sample analysis. In most cases, changes in the WBE outcomes were followed by similar trends in the clinical data. The positive predictive value of the applied WBE approach was 86% for the following week of the sample collection. In contrast, positive correlations between the two data with Spearmen correlation (rs) ranged from 0.16 to 0.36. A stronger correlation (rs = 0.18 to 0.51) was observed when WBE results were compared with COVID-19 cases identified on the next day of the sampling events. The P value of 0.007 for Dorm A suggests high significance, while moderate significance was observed for the other dormitories (B, C, and D). The outcomes of this investigation demonstrate that WBE can be a valuable tool to track the progression of diseases like COVID-19 seven days before diagnostic cases are confirmed, allowing authorities to take necessary measures in advance and also enable authorities to decide to reopen a facility after a quarantine.
基金National Natural Science Foundation of China(No.81860170).
文摘AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level.
基金supported by Key Research and Development Project of Hubei Province[Number 2020BCB022]Opening Fund of State Key Laboratory of Virology of Wuhan University[grant number 2022KF002]+2 种基金Royal Society International Exchanges Scheme[IECNSFC201116]The Academy of Medical Sciences/Wellcome Trust[Springboard grantSBF007100054]。
文摘Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019(COVID-19),a new,highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Consequently,considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2.Methods In this study,a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein(S protein)in human saliva.The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid,and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication.The electrochemical performance of the sensor was evaluated through differential pulse voltammetry.Results Under optimal experimental conditions,the linear range of the sensor was 10-13-10-9 mg/m L,whereas the detection limit was 9.55 fg/mL.Furthermore,the S protein was instilled in artificial saliva as the infected human saliva model,and the sensing platform showed satisfactory detection capability.Conclusion The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein,indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.
文摘The purpose of this study was to investigate the clinical application of severe acute respiratory distress syndrome coronavirus-2(SARS-CoV-2)specific antibody detection and anti-SARS-CoV-2 specific monoclonal antibodies(mAbs)in the treatment of coronavirus infectious disease 2019(COVID-19).The dynamic changes of SARS-CoV-2 specific antibodies during COVID-19 were studied.Immunoglobulin M(IgM)appeared earlier and lasted for a short time,while immunoglobulin G(IgG)appeared later and lasted longer.IgM tests can be used for early diagnosis of COVID-19,and IgG tests can be used for late diagnosis of COVID-19 and identification of asymptomatic infected persons.The combination of antibody testing and nucleic acid testing,which complement each other,can improve the diagnosis rate of COVID-19.Monoclonal anti-SARS-CoV-2 specific antibodies can be used to treat hospitalized severe and critically ill patients and non-hospitalized mild to moderate COVID-19 patients.COVID-19 convalescent plasma,highly concentrated immunoglobulin,and anti-SARS-CoV-2 specific mAbs are examples of anti-SARS-CoV-2 antibody products.Due to the continuous emergence of mutated strains of the novel coronavirus,especially omicron,its immune escape ability and infectivity are enhanced,making the effects of authorized products reduced or invalid.Therefore,the optimal application of anti-SARS-CoV-2 antibody products(especially anti-SARS-CoV-2 specific mAbs)is more effective in the treatment of COVID-19 and more conducive to patient recovery.