期刊文献+
共找到678篇文章
< 1 2 34 >
每页显示 20 50 100
Mechanisms of hepatic ischemia/reperfusion injury and clinical anesthesia-related protections 被引量:2
1
作者 Cai-Yang Chen Li-Qun Yang Wei-Feng Yu 《World Journal of Anesthesiology》 2014年第3期213-220,共8页
This review focuses on the mechanisms involved in hepatic ischemia-reperfusion(I/R) injury and effective therapeutic treatments associated with clinical anesthesia. Although hepatocytes are the main target cells in th... This review focuses on the mechanisms involved in hepatic ischemia-reperfusion(I/R) injury and effective therapeutic treatments associated with clinical anesthesia. Although hepatocytes are the main target cells in the whole process of I/R injury, Kupffer cells, as an initiator of harmful cascades, may play a vital role by releasing some proinflammatory mediators and reactive oxygen species in the early phase of I/R injury. The subsequent activation and recruitment of neutrophils are also involved in inflammatory response and immune activation. According to the above mechanisms, a number of strategies have been put forward in some experimental and clinical studies. Most of these therapeutic treatments originated from the generation of oxygen radicals and cytokines, the infiltration of neutrophils, the impairment of microcirculation and so on. Furthermore, increasing evidence has suggested that short periods of ischemic preconditioning have protective effects against liver I/R injury. Depending on these investigations, pharmacological preconditioning and clinical anesthesia-related effective methods have been proposed. A better understanding of the present progress on experimental statistics will bring about novel therapeutic treatments for the improvement of liver surgeries and transplantation. 展开更多
关键词 HEPATIC ischemia reperfusion injury CLINICAL ANESTHESIA protections
下载PDF
Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes 被引量:34
2
作者 Shi-Qiang Shen Yuan Zhang +1 位作者 Jin-Jian Xiang Cheng-Long Xiong 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第13期1953-1961,共9页
AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant... AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant enzyme activity. METHODS: Sixty Sprague-Dawley male rats were randomly divided into sham, I/R, C + I/R groups. The model of reduced-size liver warm ischemia and reperfusion was used. Curcumin (50 mg/kg) was administered by injection through a branch of superior mesenteric vein at 30 min before ischemia in C + I/R group. Five rats were used to investigate the survival during 1 wk after operation in each group. Blood samples and liver tissues were obtained in the remaining animals after 3, 12, and 24 h of reperfusion to assess serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver tissue NO2- + NO3-, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), nitricoxide synthase (NOS) and myeloperoxidase (MPO) activity, HspT0 expression and apoptosis ratio. RESULTS: Compared with I/R group, curcumin pretreatment group showed less ischemia/reperfusioninduced injury. CAT and SOD activity and Hsp70 expression increased significantly. A higher rate of apoptosis was observed in I/R group than in C + I/R group, and a significant increase of MDA, NO2^- + NO3^- and MPO level in liver tissues and serum transaminase concentration was also observed in I/R group compared to C + I/R group. Curcumin also decreased the activity of inducible NO synthase (iNOS) in liver after reperfusion,but had no effect on the level of endothelial NO synthase (eNOS) after reperfusion in liver. The 7 d survival rate was significantly higher in C + I/R group than in I/R group. CONCLUSION: Curcumin has protective effects against hepatic I/R injury. Its mechanism might be related to the overexpression of Hsp70 and antioxidant enzymes. 展开更多
关键词 ischemia reperfusion injury CURCUMIN LIVER protection
下载PDF
Buyang Huanwu Decoction fraction protects against cerebral ischemia/reperfusion injury by attenuating the inflammatory response and cellular apoptosis 被引量:11
3
作者 Yulian Jin Liuyi Dong +5 位作者 Changqing Wu Jiang Qin Sheng Li Chunyan Wang Xu Shao Dake Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第3期197-207,共11页
Buyang Huanwu Decoction fraction extracted from Buyang Huanwu Decoction contains saponins of Astragalus, total paeony glycoside and safflower flavones. The aim of this study was to demonstrate the neuroprotective effe... Buyang Huanwu Decoction fraction extracted from Buyang Huanwu Decoction contains saponins of Astragalus, total paeony glycoside and safflower flavones. The aim of this study was to demonstrate the neuroprotective effect and mechanism of Buyang Huanwu Decoction fraction on ischemic injury both in vivo and in vitro. In vivo experiments showed that 50-200 mg/kg Buyang Huanwu Decoction fraction reduced infarct volume and pathological injury in ischemia/reperfusion rats, markedly inhibited expression of nuclear factor-KB and tumor necrosis factor-a and promoted nestin protein expression in brain tissue. Buyang Huanwu Decoction fraction (200 mg/kg) exhibited significant effects, which were similar to those of 100 mg/kg Ginkgo biloba extract. In vitro experimental results demonstrated that 10-100 mg/L Buyang Huanwu Decoction fraction significantly improved cell viability, decreased the release of lactate dehydrogenase and malondialdehyde levels, and inhibited the rate of apoptosis in HT22 cells following oxygen-glucose deprivation. Buyang Huanwu Decoction fraction (100 mg/L) exhibited significant effects, which were similar to those of 100 mg/L Ginkgo biloba extract. These findings suggest that Buyang Huanwu Decoction fraction may represent a novel, protective strategy against cerebral ischemia/reperfusion injury in rats and oxygen-glucose deprivation-induced damage in HT22 cells in vitro by attenuating the inflammatory response and cellular apoptosis. 展开更多
关键词 neural regeneration traditional Chinese medicine Buyang Huanwu Decoction fraction ischemia/reperfusion injury brain injury hippocampus neurons APOPTOSIS inflammatory reactionoxidation traditional Chinese herbal medicines neuroprotection grants-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
Protective effects of human umbilical cord mesenchymal stem cell vein transplantation against spinal cord ischemia/reperfusion injury in rats 被引量:7
4
作者 Jun Zou Minfeng Gan Xuesong Zhu Dechun Geng Huilin Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期171-177,共7页
BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilica... BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilical cord mesenchymal stem cell (hUCMSC) transplantation achieves good therapeutic effects, but the mechanisms underlying nerve protection remain poorly understood. OBJECTIVE: To observe survival of transplanted hUCMSCs in SCIRI rat models and the influence on motor function in the hind limbs, to determine interleukin-8 expression and cellular apoptosis in spinal cord tissues, and to verify the hypothesis that hUCMSC transplantation exhibits protective effects on SCIRI. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Orthopedics in the First Affiliated Hospital of Soochow University, China between January 2007 and December 2008. MATERIALS: hUCMSCs were harvested from umbilical cord blood of healthy pregnant women after parturition in the Obstetrical Department of the First Affiliated Hospital of Soochow University, China. Rabbit anti-human BrdU monoclonal antibody was provided by DAKO, USA. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Kit and enzyme-linked immunosorbent assay (ELISA) Kit were purchased by Wuhan Boster, China. METHODS: A total of 72 healthy, Wistar, adult rats were randomly assigned to three groups: sham-surgery, model, and transplantation, with 24 rats in each group. SCIRI was induced in the model and transplantation groups via the abdominal aorta block method. The infrarenal abdominal aorta was not blocked in the sham-surgery group. Prior to abdominal aorta occlusion, 0.2 03 mL bromodeoxyuridine (BrdU)-Iabeled hUCMSCs suspension (cell concentration 5 × 10 3/uL) was injected through the great saphenous vein of the hind limb, and an equal volume of physiological saline was administered to the model and sham-surgery groups. MAIN OUTCOME MEASURES: Pathological observation of rat spinal cord tissues was performed by hematoxylin-eosin staining at 6, 24, and 48 hours post-surgery. Immunohistochemistry was applied to determine hUCMSCs survival in the spinal cord. The amount of cellular apoptosis and interleukin-8 expression in spinal cord tissues was assayed utilizing the TUNEL and ELISA methods, respectively. Motor function in the hind limbs was evaluated according to Jacob's score. RESULTS: Numerous BrdU-positive cells were observed in spinal cord tissues from the transplantation group. The number of apoptotic cells and interleukin-8 levels significantly decreased in the transplantation group (P 〈 0.05), pathological injury was significantly ameliorated, and motor function scores significantly increased (P 〈 0.05) compared with the model group. CONCLUSION: Via vein transplantation, hUCMSCs were shown to reach and survive in the injury area. Results suggested that the transplanted hUCMSCs contributed to significantly improved pathological changes in the injured spinal cord, as well as motor function, following SCIRI. The protective mechanism correlated with inhibition of cellular apoptosis and reduced production of inflammatory mediators. 展开更多
关键词 human umbilical cord mesenchymal stem cells spinal cord ischemia/reperfusion injury protective effect APOPTOSIS inflammatory mediators neural regeneration
下载PDF
Protective effect of oxysophoridine on cerebral ischemia/reperfusion injury in mice 被引量:5
5
作者 Hongbo Wang Yuxiang Li +10 位作者 Ning Jiang Xiaoping Chen Yi Zhang Kuai Zhang Tengfei Wang Yinju Hao Lin Ma Chengjun Zhao Yanrong Wang Tao Sun Jianqiang Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第15期1349-1359,共11页
Oxysophoridine, a new alkaloid extracted from Sophora alopecuroides L., has been shown to have a protective effect against ischemic brain damage. In this study, a focal cerebral ischemia/reperfusion injury model was e... Oxysophoridine, a new alkaloid extracted from Sophora alopecuroides L., has been shown to have a protective effect against ischemic brain damage. In this study, a focal cerebral ischemia/reperfusion injury model was established using middle cerebral artery occlusion in mice. Both 62.5, 125, and 250 mg/kg oxysophoridine, via intraperitoneal injection, and 6 mg/kg nimodipine, via intragastric administration, were administered daily for 7 days before modeling. After 24 hours of reperfusion, mice were tested for neurological deficit, cerebral infarct size was assessed and brain tissue was collected. Results showed that oxysophoridine at 125, 250 mg/kg and 6 mg/kg nimodipine could reduce neurological deficit scores, cerebral infarct size and brain water content in mice. These results provided evidence that oxysophoridine plays a protective role in cerebral ischemia/reperfusion injury. In addition, oxysophoridine at 62.5, 125, and 250 mg/kg and 6 mg/kg nimodipine increased adenosine-triphosphate content, and decreased malondialdehyde and nitric oxide content. These compounds enhanced the activities of glutathione-peroxidase, superoxide dismutase, catalase, and lactate dehydrogenase, and decreased the activity of nitric oxide synthase Protein and mRNA expression levels of N-methyI-D-aspartate receptor subunit NR1 were markedly inhibited in the presence of 250 mg/kg oxysophoridine and 6 mg/kg nimodipine. Our experimental findings indicated that oxysophoridine has a neuroprotective effect against cerebral ischemia/reperfusion injury in mice, and that the effect may be due to its ability to inhibit oxidative stress and expression of the N-methyI-D-aspartate receptor subunit NR1. 展开更多
关键词 neural regeneration traditional Chinese medicine brain injury OXYSOPHORIDINE ischemia/reperfusion injury oxidative stress N-methyI-D-aspartate receptor NEUROprotection grants-supported paper NEUROREGENERATION
下载PDF
An optimal dose of tea polyphenols protects against global cerebral ischemia/reperfusion injury 被引量:3
6
作者 Jianrui Lv Rongliang Xue +7 位作者 Jing Zhao Xin Wei Hui Gao Rongguo Fu Gang Wu Wei Li Xiaoming Lei Junbin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第9期783-791,共9页
Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral... Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral ischemia/reperfusion injury rat model was established using a modified four-vessel occlusion method. Rats were treated with different doses of tea polyphenols (25, 50, 100, 150, 200 mg/kg) via intraperitoneal injection. Results showed that after 2, 6, 12, 24, 48 and 72 hours of reperfusion, peroxide dismutase activity and total antioxidant capacity in brain tissue gradually increased, while malondialdehyde content gradually decreased after tea polyphenol intervention. Tea polyphenols at 200 mg/kg resulted in the most apparent changes. Terminal deoxynucleotidyl transferase-mediated nick end labeling and flow cytometry showed that 200 mg/kg tea polyphenols significantly reduced the number and percentage of apoptotJc cells in the hippocampal CA1 region of rats after cerebral ischemia/reperfusion injury. The open field test and elevated plus maze experiments showed that tea polyphenols at 200 mg/kg strengthened exploratory behavior and reduced anxiety of cerebral ischemia/reperfusion injured rats. Experimental findings indicate that tea polyphenols protected rats against cerebral ischemia/ reperfusion injury and 200 mg/kg is regarded as the optimal dose. 展开更多
关键词 neural regeneration brain injury traditional Chinese medicine tea polyphenols brain ischemia/reperfusion injury oxidative stress NEUROETHOLOGY apoptosis grants-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
Protective function of tocilizumab in human cardiac myocytes ischemia reperfusion injury 被引量:6
7
作者 Hai-Feng Cheng Yan Feng +2 位作者 Da-Ming Jiang Kai-Yu Tao Min-Jian Kong 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2015年第1期48-52,共5页
Objective:To investigate the protective function of tocilizumab in human cardiac myocytes ischemia-reperfusion injury.Methods:The human cardiac myocytes were treated by tocilizumab with different concentrations(1.0 mg... Objective:To investigate the protective function of tocilizumab in human cardiac myocytes ischemia-reperfusion injury.Methods:The human cardiac myocytes were treated by tocilizumab with different concentrations(1.0 mg/mL,3.0 mg/mL,5.0 mg/mL) for 24 h.then cells were cultured in ischemia environment for 24 h and reperfusion environment for 1 h.The MTT and flow cytometry were used to detect the proliferation and apoptosis of human cardiac myocytes,respectively.The mRNA and protein expressions of Bcl-2 and Bax were measured by qRT-PCR and western blot,respectively.Results:Compared to the negative group,pretreated by tocilizumab could significantly enhance the proliferation viability and suppress apoptosis of human cardiac myocytes after suffering ischemia reperfusion injury(P<0.05).The expression of Bcl-2 in tocilizumab treated group were higher than NC group(P<0.05).while the Bax expression were lower(P<0.05).Conclusions:Tocilizumab could significantly inhibit apoptosis and keep the proliferation viability of human cardiac myocytes after suffering ischemia reperfusion injury.Tocilizumab may obtain a widely application in the protection of ischemia reperfusion injury. 展开更多
关键词 TOCILIZUMAB HUMAN CARDIAC MYOCYTES ischemia-reperfusion injury protection
下载PDF
Research progress of TRP channel's protective effect on myocardial ischemia-reperfusion injury
8
作者 XIE Feng DUAN Guang-jing +7 位作者 QU Xin-liang ZHAO Bo JIANG Ya-ni YAN Ruo-nan ZHANG Jia-hao OU Li GAO Feng LI Min 《Journal of Hainan Medical University》 2022年第19期69-73,共5页
Transient receptor potential(TRP)channels are a type of cation channel located on the cell membrane.TRP channels are divided into 7 subfamilies(TRPC,TRPA,TRPM,TRPV,TRPN,TRPP and TRPML)and widely expressed in myocardia... Transient receptor potential(TRP)channels are a type of cation channel located on the cell membrane.TRP channels are divided into 7 subfamilies(TRPC,TRPA,TRPM,TRPV,TRPN,TRPP and TRPML)and widely expressed in myocardial tissue.In recent years,with the application of gene knockout and transgenic model animals,it has been found that members of the TRP channel subfamilies TRPM,TRPC and TRPV are closely related to myocardial ischemia-reperfusion injury.The activation or inhibition of TRP channels participates in the regulation of myocardial ischemia-reperfusion injury,reduces the infarct area of the myocardium,and exerts a protective effect.Therefore,this paper first summarizes the structural characteristics of TRPM,TRPC,and TRPV and their distribution in the cardiovascular system,and then summarizes the mechanisms of TRPM,TRPC,and TRPV that regulate myocardial ischemia and reperfusion,which will provide a certain theoretical basis for treatment of myocardial ischemia-reperfusion injury. 展开更多
关键词 Transient receptor channel Myocardial ischemia reperfusion injury protective effects
下载PDF
The protecting effects and mechanism of betaine hydrochloride on hepatic ischemia-reperfusion injury in rats
9
作者 XIN Xiao-ming,MA Lian-long,GAO Yong-feng,WANG Hao,WANG Xiao-dan,ZHU Yu-yun,GAO Yun-sheng(Taishan Medical College,Taian 271016,China) 《沈阳药科大学学报》 CAS CSCD 北大核心 2008年第S1期117-118,共2页
Objective To study the protecting effects and mechanism of betaine hydrochloride on hepatic ischemia-reperfusion injury in rats.Methods Fourty SD rats were randomly divided into 5 groups(8 animals in each group):sham-... Objective To study the protecting effects and mechanism of betaine hydrochloride on hepatic ischemia-reperfusion injury in rats.Methods Fourty SD rats were randomly divided into 5 groups(8 animals in each group):sham-operated control group(A),hepatic ischemia-reperfusion group(B),200 mg·kg-1 400 mg·kg-1 800 mg·kg-1 betaine hydrochloride+hepatic ischemia-reperfusion group(C、D、E).betaine hydrochloride was administered to animals byoral route in group C、D、E for 7 days before ischemia.A、B group was administered with NS.Made the animal model of part hepatic ischemia-reperfusion.Serum alanine aminotransferase(ALT),aspartate aminotransferase(AST)levels in the blood and themalondialdehyde(MDA),superoxide dismutase(SOD),protein content in hepatic tissue were determined after the liver had been reperfused for 24 hours;the hepatic tissue was examined under lightmicroscope and the cell apoptosis was demonstrated with flow cytometry.Results ALT,AST,MDA increased and SOD decreased significantly in B group when compared those in the A group(P<0.05),Hepatic apoptosis was significantly increased;ALT,AST,MDA decreased and SOD increased significantly in betaine hydrochloride 200 mg·kg-1(C)group when compared those in the B group(P<0.05).Hepatic apoptosis was significantly lower,The histologic changes of the liver tissue under lightmicroscope in the C group was more easer than in the I/R group(B).Conclusions Betaine hydrochloride has the ability to scavenge oxygen free radical(OFR),reduce lipid peroxidation and inhibition of apoptosis.So it can protect the rats liver damaged by ischemia-reperfusion. 展开更多
关键词 BETAINE HYDROCHLORIDE HEPATIC ischemia-reperfusion injury protecting EFFECTS MECHANISM
下载PDF
Therapeutic Role of Chinese Medicine Targeting Nrf2/HO-1 Signaling Pathway in Myocardial Ischemia/Reperfusion Injury
10
作者 LIU Chang-xing GUO Xin-yi +1 位作者 ZHOU Ya-bin WANG He 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2024年第10期949-960,共12页
Acute myocardial infarction(AMI),characterized by high incidence and mortality rates,poses a significant public health threat.Reperfusion therapy,though the preferred treatment for AMI,often exacerbates cardiac damage... Acute myocardial infarction(AMI),characterized by high incidence and mortality rates,poses a significant public health threat.Reperfusion therapy,though the preferred treatment for AMI,often exacerbates cardiac damage,leading to myocardial ischemia/reperfusion injury(MI/RI).Consequently,the development of strategies to reduce MI/RI is an urgent priority in cardiovascular therapy.Chinese medicine,recognized for its multi-component,multi-pathway,and multi-target capabilities,provides a novel approach for alleviating MI/RI.A key area of interest is the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)pathway.This pathway is instrumental in regulating inflammatory responses,oxidative stress,apoptosis,endoplasmic reticulum stress,and ferroptosis in MI/RI.This paper presents a comprehensive overview of the Nrf2/HO-1 signaling pathway's structure and its influence on MI/RI.Additionally,it reviews the latest research on leveraging Chinese medicine to modulate the Nrf2/HO-1 pathway in MI/RI treatment. 展开更多
关键词 nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway myocardial ischemia/reperfusion injury Chinese medicine mechanisms
原文传递
Research Progress on Myocardial Protection Strategies
11
作者 Na An Ma Li Xiatian Zhao 《Expert Review of Chinese Medical》 2024年第1期10-14,共5页
Myocaridial protection aims to salvage myocardium from ischemia and reperfusion injury and to reduce infarct size and its consequences.After more than 30 years of development,the concept of ischemic preconditioning ha... Myocaridial protection aims to salvage myocardium from ischemia and reperfusion injury and to reduce infarct size and its consequences.After more than 30 years of development,the concept of ischemic preconditioning has evolved into"ischemic conditioning",a term that encompasses a number of related endogenous cardioprotective strategies,which can be applied either directly to the heart(ischemic preconditioning or postconditioning)or from afar,for example to a limb(remote ischemic preconditioning,preconditioning,or postconditioning).A variety of cardioprotective therapies have shown promising results in reducing infarct size and improving clinical outcomes in patients with ischemic heart disease. 展开更多
关键词 ischemia/reperfusion injury myocaridial protection myocardial infarction research progress
下载PDF
Heat-sensitive moxibustion attenuates the inflammation after focal cerebral ischemia/ reperfusion injury 被引量:11
12
作者 Aijiao Xiao Rixin Chen: +1 位作者 Mingfei Kang Shenghai Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第33期2600-2606,共7页
Heat-sensitive moxibustion has neuroprotective effects against focal cerebral ischemia/reperfusion injury, however its mechanism of action remains unclear. In this study, rat models of focal cerebral ischemia/reperfus... Heat-sensitive moxibustion has neuroprotective effects against focal cerebral ischemia/reperfusion injury, however its mechanism of action remains unclear. In this study, rat models of focal cerebral ischemia/reperfusion injury were treated with suspended moxibustion at acupoint Dazhui (DU14) for 35 minutes. Results showed that suspended moxibustion decreased infarct volume, reduced cortical myeloperoxidase activity, and suppressed serum levels of proinflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury. Our experimental findings indicated that heat-sensitive moxibustion can attenuate inflammation and promote repair after focal cerebral ischemia/reperfusion injury. 展开更多
关键词 suspended moxibustion heat-sensitive moxibustion traditional suspended moxibustion middlecerebral artery occlusion cerebral ischemia/reperfusion injury infarct volume proinflammatorycytokines INTERLEUKIN MYELOPEROXIDASE traditional Chinese medicine neural regeneration
下载PDF
Influence of Tanshinone lla on heat shock protein 70,Bcl-2 and Bax expression in rats with spinal ischemia/reperfusion injury 被引量:9
13
作者 Li Zhang Weidong Gan Guoyao An 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第36期2882-2888,共7页
Tanshinone lla is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone Ila can effectively improve brain tissue isch... Tanshinone lla is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone Ila can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone lla, 0.5 hour prior to model establishment. Results showed that Tanshinone Ila promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone Ila, compared with positive control Danshen injection. 展开更多
关键词 Tanshinone Ila DANSHEN spinal ischemia/reperfusion injury heat shock protein 70 BCL-2 BAX cellapoptosis Chinese medicine neural regeneration
下载PDF
Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats 被引量:6
14
作者 Xin-juan Li Chao-kun Li +4 位作者 Lin-yu Wei Na Lu Guo-hong Wang Hong-gang Zhao Dong-liang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期932-937,共6页
The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusi... The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors. 展开更多
关键词 nerve regeneration brain injury hydrogen sulfide cerebral ischemia/reperfusion injury P2X7 receptor 2 3 5-triphenyl-2H-tetrazolium chloride staining animal model protection sodiumhydrosulfide immunofiuorescence middle cerebral artery occlusion NSFC grant neural regeneration
下载PDF
Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model 被引量:12
15
作者 Jinnan Zhang Wei Lu +3 位作者 Qiang Lei Xi Tao Hong You Pinghui Xie 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第25期2327-2335,共9页
Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly... Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue following ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneally injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smaller infarct area and a significantly lower number of apoptotic cells were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression. 展开更多
关键词 neural regeneration traditional Chinese medicine brain injury salvianolic acid B SALVIANOLATE heatshock protein 22 protein kinase B cerebral ischemia-reperfusion injury apoptosis NEUROprotection NEUROREGENERATION
下载PDF
Blocking the Aryl Hydrocarbon Receptor Alleviates Myocardial Ischemia/Reperfusion Injury in Rats
16
作者 Jin-xu WANG Bei-bei WANG +3 位作者 Shu-zhang YUAN Ke XUE Jin-sheng ZHANG Ai-jun XU 《Current Medical Science》 SCIE CAS 2022年第5期966-973,共8页
Objective Restoring the blood perfusion of ischemic heart tissues is the main treatment for myocardial ischemia.However,the accompanying myocardial ischemia reperfusion injury(IRI)would aggravate myocardial damage.Pre... Objective Restoring the blood perfusion of ischemic heart tissues is the main treatment for myocardial ischemia.However,the accompanying myocardial ischemia reperfusion injury(IRI)would aggravate myocardial damage.Previous studies have confirmed that aryl hydrocarbon receptor(AhR)is closely correlated to kidney and intestinal IRI.The present study aimed to explore the relationship between AhR and myocardial IRI.Methods An oxygen glucose deprivation/reoxygenation(OGD/R)model of H9c2 cells and an ischemia/reperfusion(I/R)model of Sprague-Dawley rat myocardium were established.OGD/R cells and myocardial IRI rats were treated with different concentrations of the AhR antagonist CH-223191 or agonist 6-formylindolo[3,2-b]carbazole(FICZ).Under the conditions of normoxia and hypoxia/reoxygenation,the activity of cardiomyocytes,lactate dehydrogenase(LDH)and cell reactive oxygen species(ROS)were detected.In rats,myocardial pathological damage and markers of myocardial injury were detected.Results According to the results of the cell viability,LDH and ROS tests in vitro,both CH-223191 and FICZ showed no myocardial protection under OGD/R conditions.However,the histological staining and analysis of myocardial injury marker LDH in vitro revealed that CH-223191 could significantly reduce the myocardial IRI.Conclusion AhR exhibited a different effect on myocardial IRI in vitro and in vivo.In vivo,CH-223191 could significantly alleviate the myocardial IRI,suggesting that inhibition of AhR may play a role in myocardial protection,and AhR may serve as a potential treatment target for myocardial IRI. 展开更多
关键词 aryl hydrocarbon receptor ischemia/reperfusion injury myocardial protection CH-223191 6-formylindolo[3 2-b]carbazole
下载PDF
Anti-inflammatory Effect of Heat-sensitive Moxibustion via the NF-κB Signaling Pathway on Cerebral Ischemia/Reperfusion Injury in Rats
17
作者 Aijiao Xiaoa Yisheng Xiaoa +2 位作者 Xin OuYang Lin He Mingren Chen 《Journal of Advances in Medicine Science》 2018年第3期67-79,共13页
Ischemic stroke is universally acknowledged as a common cause of long-term disability or even death. Suspended moxibustion, an indirect form of moxibustion, is when moxibustion is placed superficially over the skin wi... Ischemic stroke is universally acknowledged as a common cause of long-term disability or even death. Suspended moxibustion, an indirect form of moxibustion, is when moxibustion is placed superficially over the skin without being in contact with it. Some researchers have used this method to treat stroke patients, but strong evidence of its therapeutic effectiveness is lacking. However, the effect of traditional suspended moxibustion has recently been improved with the development of heat-sensitive suspended moxibustion. Our previous studies showed that moxibustion for 35 min provided a more effective treatment strategy than moxibustion for 15 min, and moxibustion by 35 min with tail temperature increase had a better outcome than that without, however, the mechanism underlying the effect is not clear. In this study, we treated the stroke rats with moxibustion by 35min and divided them into non-heat sensitive moxibustion(NHSM) group and heat sensitive moxibustion (HSM) group according to difference in the tail temperature increase, then we compared the effect and investigated the mechanisms between NHSM and HSM. We found that HSM significantly decreased tail-flick latency, increased neurological function score, decreased infarct volume, reduced inflammatory cells, decreased the expression of inflammatory factor ICAM-1 and reduced the expression of NF-κB p65 and p-IKKα/β in rats with focal cerebral ischemia/reperfusion injury. Our experimental findings revealed that HSM exerted its anti-inflammatory and neuroprotective effects from MCAO-induced injury by decreasing the expression of the NF-κB signaling pathway. 展开更多
关键词 Auspended MOXIBUSTION HEAT-SENSITIVE MOXIBUSTION Middle CEREBRAL artery occlusion CEREBRAL ischemia/reperfusion injury Tail temperature TAIL-FLICK latency INFARCT volume Inflammatory cells CD11b ICAM-1 NF-κB p65 p-IKKα/β Traditional Chinese medicine
下载PDF
Role of Mitophagy in Myocardial Ischemia/Reperfusion Injury and Chinese Medicine Treatment 被引量:6
18
作者 XIA Jun-yan CHEN Cong +4 位作者 LIN Qian CUI Jie WAN Jie LI Yan LI Dong 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2023年第1期81-88,共8页
Mitophagy is one of the important targets for the prevention and treatment of myocardial ischemia/reperfusion injury(MIRI).Moderate mitophagy can remove damaged mitochondria,inhibit excessive reactive oxygen species a... Mitophagy is one of the important targets for the prevention and treatment of myocardial ischemia/reperfusion injury(MIRI).Moderate mitophagy can remove damaged mitochondria,inhibit excessive reactive oxygen species accumulation,and protect mitochondria from damage.However,excessive enhancement of mitophagy greatly reduces adenosine triphosphate production and energy supply for cell survival,and aggravates cell death.How dysfunctional mitochondria are selectively recognized and engulfed is related to the interaction of adaptors on the mitochondrial membrane,which mainly include phosphatase and tensin homolog deleted on chromosome ten(PTEN)-induced kinase 1/Parkin,hypoxia-inducible factor-1α/Bcl-2 and adenovirus e1b19k Da interacting protein 3,FUN-14 domain containing protein 1 receptor-mediated mitophagy pathway and so on.In this review,the authors briefly summarize the main pathways currently studied on mitophagy and the relationship between mitophagy and MIRI,and incorporate and analyze research data on prevention and treatment of MIRI with Chinese medicine,thereby provide relevant theoretical basis and treatment ideas for clinical prevention of MIRI. 展开更多
关键词 MITOPHAGY myocardial ischemia/reperfusion injury PTEN-induced kinase 1/Parkin hypoxia-inducible factor-1α/Bcl-2 and adenovirus e1b19k Da interacting protein 3 FUN-14 domain containing protein 1 Chinese medicine
原文传递
INHIBITORY EFFECT OF TRIMETAZIDINE ON CARDIAC MYOCYTE APOPTOSIS IN RABBIT MODEL OF ISCHEMIA-REPERFUSION 被引量:6
19
作者 Rasheed AL-ghazali 《Chinese Medical Sciences Journal》 CAS CSCD 2004年第4期242-242,共1页
关键词 Animals APOPTOSIS Male MALONDIALDEHYDE Myocardial ischemia Myocardial reperfusion injury Myocytes Cardiac protective Agents Rabbits Random Allocation Research Support Non-U.S. Gov't Superoxide Dismutase TRIMETAZIDINE
下载PDF
Liver injury after intermittent or continuous hepatic pedicle clamping and its protection by reduced glutathione 被引量:2
20
《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2004年第2期209-213,共5页
关键词 HEPATIC PEDICLE CLAMPING HEPATIC ischemia/reperfusion injury reduced GLUTATHIONE protection
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部