Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve ...Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve this issue with excellent biocompatibility.Inspired by nitrite reductase,a Cu-BDC(BDC:benzene-1,4-dicarboxylic acid)catalyst with coordinated Cu(Ⅱ)sites was constructed as a heterogeneous electrocatalyst to control nitrite reduction to nitric oxide for catheter antibacteria.The combined results of in situ and ex situ tests unveil the key function of interconversion between Cu(Ⅱ)and Cu(Ⅰ)species in NO_(2)^(-)reduction to NO.After being incorporated into the actual catheter,the Cu-BDC catalyst exhibits high electrocatalytic activity toward NO_(2)^(-)reduction to NO and excellent antibacteria efficacy with a sterilizing rate of 99.9%,paving the way for the development of advanced metal-organic frameworks(MOFs)electrocatalysts for catheter antibacteria.展开更多
Thirteen novel NO-releasing derivatives of betulinic acid (BA) bearing two types of NO-donors (nitrates and furoxans) were synthesized and evaluated for their antitumor activity. The results showed that furoxan-ba...Thirteen novel NO-releasing derivatives of betulinic acid (BA) bearing two types of NO-donors (nitrates and furoxans) were synthesized and evaluated for their antitumor activity. The results showed that furoxan-based derivatives exhibited higher antitumor activity than nitrate-based derivatives, with compounds lla and llb displaying promising potency against B16 cell lines and HepG2 cell lines (IC50 〈 1 μmol/L). We supposed that NO-releasing amount of these derivatives which can be detected by Griess method may contribute more to their antitumor activity. As a result, furoxan-based derivatives released larger amount of NO than that of nitrate-based derivatives, which partially explained the higher anti-tumor activity of the former.展开更多
基金the financial support from National Postdoctoral Science Foundation of China(Nos.2021M702436 and BX2021211)Haihe Laboratory of Sustainable Chemical Transformations+1 种基金National Natural Science Foundation of China(Nos.22101202 and 22071173)Tianjin Science and Technology Programme(Nos.20JCJQJC00050 and 22ZYJDSS00060)。
文摘Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve this issue with excellent biocompatibility.Inspired by nitrite reductase,a Cu-BDC(BDC:benzene-1,4-dicarboxylic acid)catalyst with coordinated Cu(Ⅱ)sites was constructed as a heterogeneous electrocatalyst to control nitrite reduction to nitric oxide for catheter antibacteria.The combined results of in situ and ex situ tests unveil the key function of interconversion between Cu(Ⅱ)and Cu(Ⅰ)species in NO_(2)^(-)reduction to NO.After being incorporated into the actual catheter,the Cu-BDC catalyst exhibits high electrocatalytic activity toward NO_(2)^(-)reduction to NO and excellent antibacteria efficacy with a sterilizing rate of 99.9%,paving the way for the development of advanced metal-organic frameworks(MOFs)electrocatalysts for catheter antibacteria.
基金financially supported by the National Natural Science Foundation of China (No.20972190)the Academic Leadership of ‘Qing Lan’ Project of Jiangsu Department of Education
文摘Thirteen novel NO-releasing derivatives of betulinic acid (BA) bearing two types of NO-donors (nitrates and furoxans) were synthesized and evaluated for their antitumor activity. The results showed that furoxan-based derivatives exhibited higher antitumor activity than nitrate-based derivatives, with compounds lla and llb displaying promising potency against B16 cell lines and HepG2 cell lines (IC50 〈 1 μmol/L). We supposed that NO-releasing amount of these derivatives which can be detected by Griess method may contribute more to their antitumor activity. As a result, furoxan-based derivatives released larger amount of NO than that of nitrate-based derivatives, which partially explained the higher anti-tumor activity of the former.