Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we...Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.展开更多
Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer indus...Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer industry and is essential for the development of global agriculture and consequently for maintaining population growth.Furthermore,NH3 can power hydrogen(H2)fueled devices,such as H2 fuel cells(FC),to use the interconversion between chemical energy and electric energy of nitrogen(N2)cycle,which can effectively alleviate the intermittent problems of renewable energy.However,the problems faced by NH3 in storage and release still restrict its development.Herein,this review introduces the latest research and development of electrochemical NH3 synthesis and direct NH3 FC,as well as outlines the technical challenges,possible improvement measures and development perspectives.N2 reduction reaction(NRR)and nitrate reduction reaction(NO3RR)are two potential approaches for electrochemical NH3 synthesis.However,the existing research foundation still faces challenges in achieving high selectivity and efficiency.Direct NH3 FC are easy to transport and are expected to be widely used in mobile energy consuming equipment,but also limited by the lack of highly active and stable NH3 oxidation electrocatalysts.The perspectives of ammonia fuel cells as an alternative green energy are discussed.展开更多
基金National Natural Science Foundation of China(Nos.52225204,52173233 and 52202085)Innovation Program of Shanghai Municipal Education Commission,China(No.2021-01-07-00-03-E00109)+3 种基金Natural Science Foundation of Shanghai,China(No.23ZR1479200)“Shuguang Program”Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(No.20SG33)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(Nos.LZA2022001 and LZB2023002)。
文摘Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.
基金support from Suzhou Foreign Academician Workstation(SWY2021002)National Natural Science Foundation of China(No.22202144)Collaborative Innovation Center of Water Treatment Technology and Material,and Innovation Platform for Academicians of Hainan Province.
文摘Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer industry and is essential for the development of global agriculture and consequently for maintaining population growth.Furthermore,NH3 can power hydrogen(H2)fueled devices,such as H2 fuel cells(FC),to use the interconversion between chemical energy and electric energy of nitrogen(N2)cycle,which can effectively alleviate the intermittent problems of renewable energy.However,the problems faced by NH3 in storage and release still restrict its development.Herein,this review introduces the latest research and development of electrochemical NH3 synthesis and direct NH3 FC,as well as outlines the technical challenges,possible improvement measures and development perspectives.N2 reduction reaction(NRR)and nitrate reduction reaction(NO3RR)are two potential approaches for electrochemical NH3 synthesis.However,the existing research foundation still faces challenges in achieving high selectivity and efficiency.Direct NH3 FC are easy to transport and are expected to be widely used in mobile energy consuming equipment,but also limited by the lack of highly active and stable NH3 oxidation electrocatalysts.The perspectives of ammonia fuel cells as an alternative green energy are discussed.