By applying the historical-run outputs from 24 Coupled Model Intercomparison Project Phase 5(CMIP5) models and the NOAA Extended Reconstructed SST V3 b dataset(ERSST), the characteristics of different types of ENSO in...By applying the historical-run outputs from 24 Coupled Model Intercomparison Project Phase 5(CMIP5) models and the NOAA Extended Reconstructed SST V3 b dataset(ERSST), the characteristics of different types of ENSO in the selected CMIP5 models, including cold-season-matured Eastern Pacific(C-EP) ENSO, warmseason-matured EP(W-EP) ENSO, cold-season-matured Central Pacific(C-CP) ENSO, and warm-season-matured CP(W-CP) ENSO, were examined in comparison with those in the ERSST dataset. The results showed that, in general, consistent with observations, EP ENSO events in most of the model runs were relatively much stronger than CP ENSO events, and cold-season-matured ENSO events were relatively much more frequent than warm-season-matured ENSO events for both EP and CP ENSO events. The composite amplitudes of ENSO events in most of the models were generally weaker than in observations, particularly for EP El Ni?o and CP La Ni?a. Moreover, most of the models successfully reproduced the amplitude asymmetries between El Ni?o and La Ni?a for cold-season-matured EP and CP ENSO events, exhibiting an average stronger/weaker EP El Ni?o/La Ni?a regime and a weaker/stronger CP El Ni?o/La Ni?a regime. Most of the models, however, failed to reproduce the observed regimes of stronger/weaker W-EP El Ni?o/ La Ni?a and weaker/stronger W-CP El Ni?o/La Ni?a.展开更多
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB950400 and 2010CB428603)
文摘By applying the historical-run outputs from 24 Coupled Model Intercomparison Project Phase 5(CMIP5) models and the NOAA Extended Reconstructed SST V3 b dataset(ERSST), the characteristics of different types of ENSO in the selected CMIP5 models, including cold-season-matured Eastern Pacific(C-EP) ENSO, warmseason-matured EP(W-EP) ENSO, cold-season-matured Central Pacific(C-CP) ENSO, and warm-season-matured CP(W-CP) ENSO, were examined in comparison with those in the ERSST dataset. The results showed that, in general, consistent with observations, EP ENSO events in most of the model runs were relatively much stronger than CP ENSO events, and cold-season-matured ENSO events were relatively much more frequent than warm-season-matured ENSO events for both EP and CP ENSO events. The composite amplitudes of ENSO events in most of the models were generally weaker than in observations, particularly for EP El Ni?o and CP La Ni?a. Moreover, most of the models successfully reproduced the amplitude asymmetries between El Ni?o and La Ni?a for cold-season-matured EP and CP ENSO events, exhibiting an average stronger/weaker EP El Ni?o/La Ni?a regime and a weaker/stronger CP El Ni?o/La Ni?a regime. Most of the models, however, failed to reproduce the observed regimes of stronger/weaker W-EP El Ni?o/ La Ni?a and weaker/stronger W-CP El Ni?o/La Ni?a.