Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to pert...Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.展开更多
OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituen...OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.展开更多
BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(X...BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.展开更多
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ...Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.展开更多
Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Her...Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP...Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations. Responding to a wide range of exogenous and endogenous microbial or sterile stimuli, NLRP3 inflammasomes can cleave pro-caspase- 1 into active caspase- 1, which processes the pro-infammatory cytokines pro-interleukin (IL)-1 β and pro-IL-18 into active and secreted IL-1β and I L-18. The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases. However, it remains unclear whether it is involved in the pathogenesis of DM/PM, which we aim to address in our research. Methods: In this study, 22 DM/PM patients and 24 controls were recruited. The protein and RNA expression of IL-113, IL-18, NLRP3, and caspase-1 in serum and muscle samples were tested and compared between the two groups. Results: The serum IL-1 β and IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay (EL1SA, DM vs. control, 25.02 ± 8.29 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001 ; PM vs. control, 26.49±7.79 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001). Moreover, the real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed that DM/PM patients exhibited higher RNA expression of IL-lβ, IL-18, and NLRP3 in the muscle (for IL-1 β, DM vs. control, P 0.0012, PM vs. control, P = 0.0021 ; for IL- 18, DM vs. control, P = 0.0045, PM vs. control, P 0.0031 ; for NLRP3, DM vs. control, P = 0.0017, PM vs. control, P 0.0006). Moreover, the protein expression of NLRP3 and caspase- 1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls. Conclusions: Our findings demonstrate that the NLRP3 inflammasome is implicated in the pathogenesis of DM/PM. High NLRP3 expression led to elevated levels of IL-l13 and IL-18 and could be one of the factors promoting disease progress.展开更多
Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms invo...Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease. CAPS is associated with gain-of-function missense mutations in NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), the gene encoding NLRP3. Moreover, most mutations leading to MWS occurred in exon 3 ofNLRP3 gene. Here, we reported a novel mutation occurred in exon 1 ofNLRP3 gene in an MWS patient and attempted to explore the pathogenic mechanism. Methods: Genetic sequence analysis of NLRP3 was performed in an MWS patient who presented with periodic lever, arthralgia, and multiform skin lesions. NLRP3 was also analyzed in this patient's parents and 50 healthy individuals. Clinical examinations including X-ray examination, skin biopsy, bone marrow aspiration smear, and blood test of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum levels oflL-1β, immunoglobulin E (lgE), antineutrophil cytoplasmic antibodies, antinuclear antibodies, and extractable nuclear antigen were also analyzed. The protein structure of mutant NLRP3 inflammasome was calculated by SWISS-MODEL software. Proteins of wild type and mutant components ofNLRP3 inflammasome were expressed and purified, and the interaction abilities between these proteins were tested by surface plasmon resonance (SPR) assay. Results: X-ray examination showed no abnormality in the patient's knees. Laboratory tests indicated an elevation of CRP (233.24 nag/L) and ESR (67 mm/h) when the patient had fever. Serum IL-1β increased to 24.37 pg/ml, and serum lgE was higher than 2500.00 IU/ml. Other blood tests were normal. Bone marrow aspiration smear was normal. A novel point mutation c.92A〉T in exon 1 of NLRP3 gene was identified, which caused a p.D31V mutation in pyrin domain (PYD) of NLRP3. SPR assay showed that this point mutation may strengthen the interaction between the PYD of NLRP3 and the PYD of the apoptosis-associated speck-like protein. The mutation c.92A〉T in exon 1 of the NLRP3 gene was not lbund in the patient's parents and 50 healthy individuals. Conclusions: The rnutation c.92A〉T in exon 1 of the NLRP3 gene is a novel mutation associated with MWS. The p.D31V mutation might promote the activation ofNLRP3 inflammasome and induce MWS in this patient.展开更多
基金supported by the State Key Program of National Natural Science of China (81930110)Military Logistics Research Project on Health Special Project (23BJZ33)the Key Project at Central Government Level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302)。
文摘Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.
基金Natural Science Foundation Project of Chongqing Municipality:a Metabolome-based Study on the Protective Mechanism of Yemazhui(Herba Eupatorii Lindleyani)Sesquiterpene Lactones Against Acute Lung Injury(No.cstc2021jcyj-msxmX0365)Science and Technology Research Program of Chongqing Municipal Education Commission:a Cytokine Storm-based Study of the Protective Effect of Yemazhui(Herba Eupatorii Lindleyani)Extract Intervention on COVID-19 Lung Injury(No.KJZD-K202215101)。
文摘OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.
基金Supported by Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD011)
文摘BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
基金supported by the National Natural Science Foundation of China,No.81971246 (to TM)Opening Foundation of Jiangsu Key Laboratory of Neurodegeneration,Nanjing Medical University,No.KF202204 (to LZ and SF)。
文摘Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
基金supported by the National Key Research and Development Program of China,No.2022YFC2402701(to WC)Key International(Regional)Joint Research Program of the National Natural Science Foundation of China,No.81820108009(to SY)+5 种基金the National Natural Science Foundation of China,Nos.81970890(to WC)and 82371148(to WG)Fujian Provincial Healthcare Young and Middle-aged Backbone Talent Training Project,No.2023GGA035(to XC)Spring City Planthe High-level Talent Promotion and Training Project of Kunming,No.2022SCP001(to SY)the Natural Science Foundation of Hainan Province of China,No.824MS052(to XS)the Sixth Medical Center of Chinese PLA General Hospital Innovation Cultivation,No.CXPY202116(to LX)。
文摘Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
基金This work was supported by a grant from the National Natural Science Foundation of China (No. 81271399).
文摘Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations. Responding to a wide range of exogenous and endogenous microbial or sterile stimuli, NLRP3 inflammasomes can cleave pro-caspase- 1 into active caspase- 1, which processes the pro-infammatory cytokines pro-interleukin (IL)-1 β and pro-IL-18 into active and secreted IL-1β and I L-18. The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases. However, it remains unclear whether it is involved in the pathogenesis of DM/PM, which we aim to address in our research. Methods: In this study, 22 DM/PM patients and 24 controls were recruited. The protein and RNA expression of IL-113, IL-18, NLRP3, and caspase-1 in serum and muscle samples were tested and compared between the two groups. Results: The serum IL-1 β and IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay (EL1SA, DM vs. control, 25.02 ± 8.29 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001 ; PM vs. control, 26.49±7.79 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001). Moreover, the real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed that DM/PM patients exhibited higher RNA expression of IL-lβ, IL-18, and NLRP3 in the muscle (for IL-1 β, DM vs. control, P 0.0012, PM vs. control, P = 0.0021 ; for IL- 18, DM vs. control, P = 0.0045, PM vs. control, P 0.0031 ; for NLRP3, DM vs. control, P = 0.0017, PM vs. control, P 0.0006). Moreover, the protein expression of NLRP3 and caspase- 1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls. Conclusions: Our findings demonstrate that the NLRP3 inflammasome is implicated in the pathogenesis of DM/PM. High NLRP3 expression led to elevated levels of IL-l13 and IL-18 and could be one of the factors promoting disease progress.
基金This work was supported by the grant from the National Natural Science Foundation of China (No. 81201267).
文摘Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease. CAPS is associated with gain-of-function missense mutations in NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), the gene encoding NLRP3. Moreover, most mutations leading to MWS occurred in exon 3 ofNLRP3 gene. Here, we reported a novel mutation occurred in exon 1 ofNLRP3 gene in an MWS patient and attempted to explore the pathogenic mechanism. Methods: Genetic sequence analysis of NLRP3 was performed in an MWS patient who presented with periodic lever, arthralgia, and multiform skin lesions. NLRP3 was also analyzed in this patient's parents and 50 healthy individuals. Clinical examinations including X-ray examination, skin biopsy, bone marrow aspiration smear, and blood test of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum levels oflL-1β, immunoglobulin E (lgE), antineutrophil cytoplasmic antibodies, antinuclear antibodies, and extractable nuclear antigen were also analyzed. The protein structure of mutant NLRP3 inflammasome was calculated by SWISS-MODEL software. Proteins of wild type and mutant components ofNLRP3 inflammasome were expressed and purified, and the interaction abilities between these proteins were tested by surface plasmon resonance (SPR) assay. Results: X-ray examination showed no abnormality in the patient's knees. Laboratory tests indicated an elevation of CRP (233.24 nag/L) and ESR (67 mm/h) when the patient had fever. Serum IL-1β increased to 24.37 pg/ml, and serum lgE was higher than 2500.00 IU/ml. Other blood tests were normal. Bone marrow aspiration smear was normal. A novel point mutation c.92A〉T in exon 1 of NLRP3 gene was identified, which caused a p.D31V mutation in pyrin domain (PYD) of NLRP3. SPR assay showed that this point mutation may strengthen the interaction between the PYD of NLRP3 and the PYD of the apoptosis-associated speck-like protein. The mutation c.92A〉T in exon 1 of the NLRP3 gene was not lbund in the patient's parents and 50 healthy individuals. Conclusions: The rnutation c.92A〉T in exon 1 of the NLRP3 gene is a novel mutation associated with MWS. The p.D31V mutation might promote the activation ofNLRP3 inflammasome and induce MWS in this patient.