期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
The Non-flammable Skin of Our Textiles
1
作者 Feng Yuan 《China Textile》 2007年第8期49-49,共1页
Do you know that even our curtains and table clothes have skins? They might be invisible to our naked eyes, however they do exist, and also, protect us.
关键词 very The non-flammable Skin of Our Textiles
下载PDF
“In-N-out” design enabling high-content triethyl phosphate-based non-flammable and high-conductivity electrolytes for lithium-ion batteries
2
作者 Mengchuang Liu Fenfen Ma +8 位作者 Zicheng Ge Ziqi Zeng Qiang Wu Hui Yan Yuanke Wu Sheng Lei Yanli Zhu Shijie Cheng Jia Xie 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第2期724-731,共8页
Safety issues related to flammable electrolytes in lithium-ion batteries(LIBs) remain a major challenge for their extended applications.The use of non-flammable phosphate-based electrolytes has proved the validity in ... Safety issues related to flammable electrolytes in lithium-ion batteries(LIBs) remain a major challenge for their extended applications.The use of non-flammable phosphate-based electrolytes has proved the validity in inhibiting the combustion of LIBs.However,the strong interaction between Li^(+) and phosphate leads to a dominant solid electrolyte interphase(SEI) with limited electronic shielding,resulting in the poor Li^(+) intercalation at the graphite(Gr) anode when using high-phosphate-content electrolytes.To mitigate this issue and improve Li^(+) insertion,we propose an “In-N-Out” strategy to render phosphates “noncoordinative”.By employing a combination of strongly polar solvents for a “block effect” and weakly polar solvents for a “drag effect”,we reduce the Li^(+)–phosphate interaction.As a result,phosphates remain in the electrolyte phase(“In”),minimizing their impact on the incompatibility with the Gr electrode(“Out”).We have developed a non-flammable electrolyte with high triethyl phosphate(TEP) content(>60 wt.%),demonstrating the excellent ion conductivity(5.94 mS cm^(-1) at 30 ℃) and reversible Li^(+) intercalation at a standard concentration(~1 mol L^(-1)).This approach enables the manipulation of multiple electrolyte functions and holds the promise for the development of safe electrochemical energy storage systems using non-flammable electrolytes. 展开更多
关键词 lithium-ion batteries graphite anode high-phosphate-content electrolytes non-flammable electrolyte excellent ion conductivity standard concentration
原文传递
Safe growth of graphene from non-flammable gas mixtures via chemical vapor deposition
3
作者 Ying Feng Daniel J.Trainer +2 位作者 Hongshang Peng Ye Liu Ke Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期285-290,共6页
Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra c... Chemical vapor deposition has emerged as the most promising technique for the growth of graphene.However, most reports of this technique use either flammable or explosive gases, which bring safety concerns and extra costs to manage risk factors. In this article, we demonstrate that continuous monolayer graphene can be synthesized via chemical vapor deposition technique on Cu foils using industrially safe gas mixtures. Important factors, including the appropriate ratio of hydrogen flow and carbon precursor,pressure, and growth time are considered to obtain graphene films. Optical measurements and electrical transport measurements indicate graphene films are with comparable quality to other reports. Such continuous large area graphene can be synthesized under non-flammable and non-explosive conditions, which opens a safe and economical method for mass production of graphene. It is thereby beneficial for integration of graphene into semiconductor electronics. 展开更多
关键词 Graphene Safe growth non-flammable Chemical vapor deposition(CVD) Contact resistance Transfer length method
原文传递
Incombustible solid polymer electrolytes:A critical review and perspective
4
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 non-flammable electrolyte Solid polymer electrolyte High safety electrolyte Solid state electrolyte Solid state battery
下载PDF
Structural regulation chemistry of lithium-ion solvation in nonflammable phosphate-based electrolytes for high interfacial compatibility with graphite anode
5
作者 Chenyang Shi Xinjing Huang +8 位作者 Jiahao Gu Zeyu Huang Fangyan Liu Mengran Wang Qiyu Wang Bo Hong Zhian Zhang Jie Li Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期501-508,I0013,共9页
With the booming development of lithium-ion batteries,safety has become one of the most primary focuses of current researches.Although there are various approaches to enhance the safety of lithiumion batteries,phospha... With the booming development of lithium-ion batteries,safety has become one of the most primary focuses of current researches.Although there are various approaches to enhance the safety of lithiumion batteries,phosphate-based electrolyte holds the greatest potential for practical application due to their non-flammability.Nonetheless,its compatibility issue with the graphite anode remains a significant obstacle to its widespread use.Herein,an effective method is proposed to improve the compatibility of electrolyte with graphite(Gr)anode by rationally adjusting the proportion of lithium salt and solvent components to optimize the Li^(+)solvation structure.By slightly increasing the Li^(+)/triethyl phosphate(TEP)ratio,TEP alone cannot fully occupy the inner solvation sheath and therefore less polar ethylene carbonate(EC)has to be recruited,and the solvation structure gradually changes from Li^(+)–[TEP]_(4)to Li^(+)–[TEP]_(3)[EC]with the coexistence of EC and TEP.Simultaneously,EC molecules in the Li^(+)–[TEP]_(3)[EC]could be preferentially reduced on graphite compared to the TEP molecules,resulting in the formation of a uniform and durable solid-electrolyte interphase(SEI)layer.Benefiting from the optimized phosphate-based electrolyte,the Gr|Li battery exhibits a capacity retention rate of 96.8%after stable cycling at 0.5 C for 470 cycles which shows a longer cycle life than the battery with carbonate electrolyte(cycling at 0.5 C for 450 cycles).Therefore,this work provides the guidance for designing a non-flammable phosphate-based electrolyte for high-safety and long cycling-life lithium-ion batteries. 展开更多
关键词 Ethylene carbonate Triethyl phosphate Solvation structure non-flammable electrolyte
下载PDF
Dual-filler reinforced PVDF-HFP based polymer electrolyte enabling high-safety design of lithium metal batteries
6
作者 Chang Fang Kangsheng Huang +3 位作者 Jing Zhao Shiqi Tian Hui Dou Xiaogang Zhang 《Nano Research》 SCIE EI CSCD 2024年第6期5251-5260,共10页
Despite the high energy density of lithium metal batteries(LMBs),their application in rechargeable batteries is still hampered due to insufficient safety.Here,we present a novel flame-retardant solid-state electrolyte... Despite the high energy density of lithium metal batteries(LMBs),their application in rechargeable batteries is still hampered due to insufficient safety.Here,we present a novel flame-retardant solid-state electrolyte based on polyvinylidene fluoride-hexafluoropropylene(PVDF-HFP)with nano SiO_(2)aerogel as an inert filler but Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)as an auxiliary component to enhance the ion conductivity.The introduction of SiO_(2)aerogels imparts the polymer electrolyte with exceptional thermal stability and flame retardancy.Simultaneously,the interaction between hydroxyl groups of SiO_(2)particles and PVDF-HFP creates a strong cross-linking structure,enhancing the mechanical strength and stability of the electrolyte.Furthermore,the presence of SiO_(2)aerogel and LLZTO facilitates the dissociation of lithium salts through Lewis acid-base interactions,resulting in a high ionic conductivity of 1.01×10^(−3)S·cm^(−1)and a wide electrochemical window of~5.0 V at room temperature for the prepared electrolytes.Remarkably,the assembled Li|Li cell demonstrates the excellent resistance to lithium dendrite and runs stablly for over 1500 h at a current density of 0.25 mA·cm^(−2).Thus,we prepare a pouch cell with high safety,which can work normally after short-circuiting under the external folding and cutting. 展开更多
关键词 polymer electrolyte SiO_(2)/Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)dual-filler non-flammable long cycle life lithium metal battery
原文传递
Wide-temperature range and high safety electrolytes for highvoltage Li-metal batteries 被引量:1
7
作者 Anran Pan Zhicheng Wang +6 位作者 Fengrui Zhang Lei Wang Jingjing Xu Jieyun Zheng Jianchen Hu Chenglong Zhao Xiaodong Wu 《Nano Research》 SCIE EI CSCD 2023年第6期8260-8268,共9页
Along with the keeping growing demand for high-energy-density energy storage system,high-voltage Li-metal batteries(LMBs)have attracted many attentions.In view of many defects of the commercial electrolytes,such as fl... Along with the keeping growing demand for high-energy-density energy storage system,high-voltage Li-metal batteries(LMBs)have attracted many attentions.In view of many defects of the commercial electrolytes,such as flammability,limited operation temperature range,and severe Li dendrite growth,non-flammable phosphate-based localized highly concentrated electrolytes(LHCE)have been explored as one of the safe electrolytes for LMBs.But until now there is rare report on wide-temperature range LMBs using phosphate-based electrolytes.Here,we prepare a wide-temperature LHCE,which is composed of lithium difluoro(oxalato)borate(LiDFOB),triethyl phosphate(TEP),and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(HFE),and explore the applicability in wide-temperature LMBs from−40 to 70℃.In the LHCE,both TEP and HFE are non-flammable,and Li^(+) is highly coordinated with TEP and DFOB^(−),which can effectively inhibit the TEP decomposition on anode,and facilitate the preferential reduction of DFOB^(−),thus obtain a robust solid electrolyte interphase(SEI)to suppress Li dendrite growth and side reactions.Therefore,this LHCE can not only endow Li/Cu and Li/Li cells with high Coulombic efficiency(CE)and long cycling lifespan,but also be applied to LiFePO_(4)(LFP)/Li and LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)/Li LMBs.Most importantly,the NCM523/Li LMBs with LHCE can deliver stable cycling performance at 4.5 V high-voltage and high-temperature(70℃),as well as excellent low-temperature capacity retention even though both charging and discharging process were carried out at−40℃. 展开更多
关键词 safe electrolytes wide-temperature non-flammable high-voltage batteries
原文传递
Lithium(fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide for stabilizing cathode-electrolyte interface in sulfonamide electrolytes
8
作者 Hao Wu Ziyu Song +2 位作者 Wenfang Feng Zhibin Zhou Heng Zhang 《Nano Research》 SCIE EI CSCD 2023年第7期9507-9518,共12页
Rechargeable lithium metal batteries(RLMBs)have been regarded as promising successors for contemporary lithium-ion batteries,in view of their high gravimetric and volumetric energy densities.Conventional non-aqueous l... Rechargeable lithium metal batteries(RLMBs)have been regarded as promising successors for contemporary lithium-ion batteries,in view of their high gravimetric and volumetric energy densities.Conventional non-aqueous liquid electrolytes containing organic carbonate solvents possess high chemical reactivities with metallic lithium anode and high flammability,which induces considerable safety threats under extreme conditions(e.g.,overcharging and thermal runaway).Herein,we propose the utilization of fluorinated sulfonamide(i.e.,N,N-dimethyl fluorosulfonamide(DMFSA))as solvent,together with lithium(fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide(LiFNFSI)as co-salt and/or electrolyte additive for accessing safer and highperforming RLMBs.Comprehensive physical(e.g.,thermal transition,viscosity,and ionic conductivity)and electrochemical(e.g.,anodic stability on different electrodes)characterizations have been performed,aiming to reveal the inherent characteristics of the sulfonamide-based electrolytes and the particular role of LiFNFSI on the stabilization of LiCoO_(2) cathode.It has been demonstrated that the sulfonamide-based electrolytes exhibit superior flame-retardant abilities and decent ionic conductivities(>1 mS·cm^(-1)at room temperature).The incorporation of LiFNFSI as co-salt and/or electrolyte additive could significantly suppress the side reactions occurring at the cathode compartment,through the preferential decompositions of the FNFSI-anion.This work is anticipated to give an in-depth understanding on the working mechanism of LiFNFSI in the sulfonamide-based electrolytes,and also spurs the development of high-energy and safer RLMBs. 展开更多
关键词 lithium metal batteries lithium(fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide SULFONAMIDE non-flammable electrolyte cathode stabilization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部