期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Noether Symmetry Can Lead to Non-Noether Conserved Quantity of Holonomic Nonconservative Systems in General Lie Transformations 被引量:4
1
作者 LUOShao-Kai JIALi-Qun CAIJian-Le 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期193-196,共4页
For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,... For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results. 展开更多
关键词 holonomic conservative system noether symmetry non-noether conservedquantity general inifinitesimal transformations of groups
下载PDF
Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives 被引量:3
2
作者 王琳莉 傅景礼 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期647-652,共6页
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship betwe... In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results. 展开更多
关键词 conformable fractional derivative Hamilton's canonical equation non-noether conserved quantity
下载PDF
A series of non-Noether conservative quantities and Mei symmetries of nonconservative systems 被引量:2
3
作者 刘鸿基 傅景礼 唐贻发 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第3期599-604,共6页
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-... In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry. 展开更多
关键词 Mei symmetry non-noether conservative quantity Lutzky conservative quantity nonconservative system
下载PDF
Non-Noether Conserved Quantity for Relativistic Nonholonomic System with Variable Mass 被引量:1
4
作者 QIAOYong-Fen LIRen-Jie MAYong-Sheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期197-200,共4页
Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differenti... Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result. 展开更多
关键词 analytical mechanics RELATIVITY nonholonomic system variable mass non-noether conserved quantity
下载PDF
Non-Noether Conserved Quantity of Poincaré-Chetaev Equations of a Generalized Classical Mechanics 被引量:1
5
作者 ZHANG Peng-Yu FANG Jian-Hui WANG Peng DING Ning 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第6期961-964,共4页
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is disc... In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results. 展开更多
关键词 Poincaré-Chetaev equations generalized classical mechanics Lie symmetry non-noether conserved quantity
下载PDF
Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems
6
作者 郑世旺 唐贻发 傅景礼 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第2期243-248,共6页
Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constr... Non-Noether symmetries and conservative quantities of nonholonomic nonconservative dynamical systems are investigated in this paper. Based on the relationships among motion, nonconservative forces, nonholonomic constrained forces and Lagrangian, non-Noether symmetries and Lutzky conservative quantities are presented for nonholonomic nonconservative dynamical systems. The relation between non-Noether symmetry and Noether symmetry is discussed and it is further shown that non-Noether conservative quantities can be obtained by a complete set of Noether invariants. Finally, an example is given to illustrate these results. 展开更多
关键词 conserved quantity non-noether symmetry nonholonomic nonconservative system infinitesimal transformation
下载PDF
New non-Noether conserved quantities of mechanical system in phase space
7
作者 闫向红 方建会 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第10期2197-2201,共5页
This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new n... This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results. 展开更多
关键词 non-noether conserved quantity Lie symmetry form invariance phase space
下载PDF
Weak Noether Symmetry and non-Noether Conserved Quantities for General Holonomic Systems
8
作者 XIE Jia-Fang MEI Feng-Xiang GANG Tie-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期844-846,共3页
A new kind of weak Noether symmetry for a general holonomic system is defined in such a way that themethods to construct Hojman conserved quantity and new-type conserved quantity are given.It turns out that weintroduc... A new kind of weak Noether symmetry for a general holonomic system is defined in such a way that themethods to construct Hojman conserved quantity and new-type conserved quantity are given.It turns out that weintroduce a new approach to look for the conserved laws.Two examples are presented. 展开更多
关键词 weak Noether symmetry non-noether conserved quantity general holonomic system
下载PDF
Lie Symmetrical Non-Noether Conserved Quantities of Poincaré-Chetaev Equations
9
作者 ZHANG Peng-Yu FANG Jian-Hui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2X期223-225,共3页
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determ... In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré-Chetaev equations under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. 展开更多
关键词 Poincaré-Chetaev equations Lie symmetry non-noether conserved quantity
下载PDF
Noether symmetry and non-Noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations 被引量:3
10
作者 罗绍凯 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3182-3186,共5页
For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of tile theory of i... For a relativistic holonomic nonconservative system, by using the Noether symmetry, a new non-Noether conserved quantity is given under general infinitesimal transformations of groups. On the basis of tile theory of invariance of differential equations of motion under general infinitesimal transformations, we construct the relativistic Noether symmetry, Lie symmetry and the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations. By using the Noether symmetry, a new relativistic non-Noether conserved quantity is given which only depends on the variables t, qs and qs. An example is given to illustrate the application of the results. 展开更多
关键词 RELATIVITY holonomic nonconservative system Noether symmetry non-noethcr con-served quantity
下载PDF
Non-Noether conserved quantity for differential equations of motion in the phase space 被引量:10
11
作者 MEI FengxiangDepartment of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China 《Chinese Science Bulletin》 SCIE EI CAS 2002年第24期2049-2050,共2页
A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining eq... A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result. 展开更多
关键词 MECHANICAL system PHASE SPACE non-noether CONSERVED quantity.
原文传递
基于非标准Lagrange函数的分数阶Lagrange系统的Noether对称性与守恒量
12
作者 张林洁 张毅 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期82-90,共9页
研究基于两类非标准Lagrange函数(指数Lagrange函数和幂律Lagrange函数)的分数阶Lagrange系统的Noether对称性与守恒量.首先,分别导出Caputo分数阶导数下两类非标准Lagrange系统的运动微分方程;其次,根据作用量在无穷小变换下的不变性,... 研究基于两类非标准Lagrange函数(指数Lagrange函数和幂律Lagrange函数)的分数阶Lagrange系统的Noether对称性与守恒量.首先,分别导出Caputo分数阶导数下两类非标准Lagrange系统的运动微分方程;其次,根据作用量在无穷小变换下的不变性,给出了分数阶非标准Lagrange系统的Noether对称变换的定义和判据;最后,建立系统的Noether定理并举例说明结果的应用. 展开更多
关键词 分数阶Lagrange系统 非标准Lagrange函数 NOETHER对称性 CAPUTO导数
下载PDF
Birkhoff系统的一般Lie对称性和非Noether守恒量 被引量:7
13
作者 张宏彬 陈立群 顾书龙 《力学学报》 EI CSCD 北大核心 2004年第2期254-256,共3页
研究Birkhoff系统的一般Lie对称性导致的非Noether守恒量。得到非Noether守恒量的存在定理,举例说明结果的应用。
关键词 分析力学 BIRKHOFF系统 LIE对称性 非NOETHER守恒量 无限小变换
下载PDF
变质量非完整系统的非Noether守恒量 被引量:2
14
作者 赵淑红 乔永芬 马永胜 《江西师范大学学报(自然科学版)》 CAS 2004年第2期110-113,共4页
利用时间不变的无限小变化下的Lie对称性,研究变质量非完整力学系统的一类新的守恒量.给出系统的运动微分方程.研究时间不变的无限小变化下的Lie对称性确定方程.建立系统的Hojman守恒定理.举例说明结果的应用.
关键词 变质量非完整力学系统 非NOETHER守恒量 LIE对称性 确定方程 Hojman守恒定理 运动微分方程
下载PDF
非Chetaev型非完整系统的非Noether守恒量 被引量:1
15
作者 乔永芬 马永胜 赵淑红 《信阳师范学院学报(自然科学版)》 CAS 2004年第2期162-165,共4页
利用时间不变的无限小变换下的Lie对称性,研究非Chetaev型非完整系统的非Noether守恒量.给出系统的运动微分方程.研究时间不变的无限小变换下的Lie对称性的确定方程,建立系统的Hojman守恒定理,举例说明结果的应用.
关键词 非完整系统 LIE对称性 确定方程 非NOETHER守恒量
下载PDF
Birkhoff系统Noether对称性导致的Hojman守恒量 被引量:1
16
作者 梅凤翔 许学军 秦茂昌 《浙江师范大学学报(自然科学版)》 CAS 2004年第3期217-220,共4页
提出由Birkhoff系统Noether对称性导出非Noether守恒量的方法.首先,证明系统Noether对称性必然是Lie对称性;其次,将Hojman定理应用于Noether对称性;最后,举例说明结果的应用.
关键词 NOETHER对称性 BIRKHOFF系统 HOJMAN守恒量 LIE对称性 非NOETHER守恒量 证明 定理应用 举例 必然 方法
下载PDF
相空间中非保守系统的Herglotz广义变分原理及其Noether定理 被引量:18
17
作者 张毅 《力学学报》 EI CSCD 北大核心 2016年第6期1382-1389,共8页
与经典变分原理相比,基于由微分方程定义的作用量的Herglotz广义变分原理给出了非保守动力学系统的一个变分描述,它不仅能够描述所有采用经典变分原理能够描述的动力学过程,而且能够应用于经典变分原理不能适用的非保守或耗散系统.将Her... 与经典变分原理相比,基于由微分方程定义的作用量的Herglotz广义变分原理给出了非保守动力学系统的一个变分描述,它不仅能够描述所有采用经典变分原理能够描述的动力学过程,而且能够应用于经典变分原理不能适用的非保守或耗散系统.将Herglotz广义变分原理拓展到相空间,研究相空间中非保守力学系统的Herglotz广义变分原理与Noether定理及其逆定理.首先,提出相空间中Herglotz广义变分原理,给出相空间中非保守系统的变分描述,导出相应的Hamilton正则方程;其次,基于非等时变分与等时变分之间的关系,导出相空间中Hamilton-Herglotz作用量变分的两个基本公式;再次,给出Noether对称变换的定义和判据,提出并证明相空间中非保守系统基于Herglotz变分问题的Noether定理及其逆定理,揭示了相空间中力学系统的Noether对称性与守恒量之间的内在联系.在经典条件下,Herglotz广义变分原理退化为经典变分原理,与之相应的相空间中的Noether定理退化为经典Hamilton系统的Noether定理.文末以著名的Emden方程和平方阻尼振子为例说明上述方法和结果的有效性. 展开更多
关键词 Herglotz 广义变分原理 NOETHER 定理 非保守动力学 相空间
下载PDF
单面完整系统相对于非惯性系的微分变分原理与守恒律 被引量:1
18
作者 谢小明 张毅 《苏州科技学院学报(自然科学版)》 CAS 2003年第2期21-25,共5页
文章建立了非惯性系中单面完整约束力学系统的D’Alembert-Lagrange原理,基于微分变分原理在无限小变换下的不变性,给出非惯性系中单面完整约束系统的Noether定理及其逆定理,最后举例说明定理的应用。
关键词 单面约束 完整系统 变分原理 NOETHER定理 非惯性系
下载PDF
El-Nabulsi模型下非标准Lagrange函数的动力学系统的Noether定理 被引量:1
19
作者 周小三 张毅 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期535-540,共6页
研究El-Nabulsi模型下基于非标准Lagrange函数的动力学系统的Noether定理.建立了基于指数Lagrange函数和Lagrange函数幂函数等两种非标准Lagrange函数的Hamilton原理,得到了系统的Euler-Lagrange方程;依据Hamilton作用量在无限小变换下... 研究El-Nabulsi模型下基于非标准Lagrange函数的动力学系统的Noether定理.建立了基于指数Lagrange函数和Lagrange函数幂函数等两种非标准Lagrange函数的Hamilton原理,得到了系统的Euler-Lagrange方程;依据Hamilton作用量在无限小变换下的不变性,给出了Noether对称变换与准对称变换的条件,建立了动力学系统基于非标准Lagrange函数的Noether定理.文末举例说明结果的应用. 展开更多
关键词 非标准Lagrange函数 HAMILTON原理 NOETHER定理 El-Nabulsi模型
下载PDF
非完整系统相对于非惯性系的Noether理论 被引量:7
20
作者 俞慧丹 张解放 许友生 《应用数学和力学》 EI CSCD 北大核心 1993年第6期499-506,共8页
本文通过构造广义惯性势,建立起非完整系统相对于非惯性系的新型Gauss型变分原理.提出并证明了非完整系统相对于非惯性系的Noether定理和逆定理.最后举例说明其应用.
关键词 非完整系统 非惯性系 NOETHER理论
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部