SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surfa...SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).展开更多
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method...In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.展开更多
Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and ...Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.展开更多
Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ ...Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.展开更多
This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n...This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n—C_6H_(14)and n—C_7H_(16),we find that the components have selectivity to CH_3COCH_3, C_2H_5OH and that the ideal amount of Pr_6O_(11) in the components is about I.Owt%.The experiments also show that with the increase of the amount of Pr_6O_(11),the ideal working temperature,the response and restoration time decrease.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 g...Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 gas sensing of were studied. Results showed that the PEDOT:PSS+nc-TiO2 film with a content of 9.0 wt% of TiO2 is most suitable for both the hole transport layer and the NH3 sensing. The responding time of the sensor made from this composite film reached a value as fast as 20 s. The rapid responsiveness to NH3 gas was attributed to the efficient movement of holes as the major charge carriers in PEDOT:PSS+nc-TiO2 composite films. Useful applications in organic electronic devices like light emitting diodes and gas thin film sensors can be envisaged.展开更多
WO3 nanoparticles were successfully deposited onto SiO_(2)/Si substrates equipped with a pair of interdigitated Pt electrodes by heating tungsten filaments in a vacuum chamber. The morphology and structure of the obta...WO3 nanoparticles were successfully deposited onto SiO_(2)/Si substrates equipped with a pair of interdigitated Pt electrodes by heating tungsten filaments in a vacuum chamber. The morphology and structure of the obtained WO3 nanoparticles were characterized by means of field emission scanning electron microscopy (FESEM) and X-ray diffractometer (XRD). The results revealed that these nanoparticles show a sphere-like structure and their sizes depend on deposing pressure. Furthermore, the NO_(2) sensing properties of WO3 nanoparticles were studied. The intrinsic WO3 nanoparticles with small size exhibit surprisingly high response to ppb-level NO_(2), low detection limit, excellent selectivity, and good stability at a very low operating temperature, demonstrating their potential in monitoring ppb-level NO_(2) at low power consumption. In addition, an in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurement was carried out to propose the NO_(2) sensing mechanism, which demonstrates that adsorbed nitrate and nitrite species are the main species on WO3 surface. Furthermore, the intensity and the sensing response show the same trend with respect to the temperature, indicating that nitrate and nitrite species play a joint role in NO_(2) sensing behavior on WO3 surface.展开更多
Petal-like ZnO nanosheets were synthesized with zinc nitrate hexahydrate and sodium hydroxide as starting materials in ammonia and ethanol mixture solution. RuO2 modified ZnO nanosheets were also prepared by a calcina...Petal-like ZnO nanosheets were synthesized with zinc nitrate hexahydrate and sodium hydroxide as starting materials in ammonia and ethanol mixture solution. RuO2 modified ZnO nanosheets were also prepared by a calcination route. The as-prepared products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, and its specific BET surface area was calculated by nitrogen adsorption method. The sensitivity, response and recovery speed were examined. The results show that RuO2 modified petal-like ZnO based sensor exhibits a high sensitivity, a low detection limit, fast response and recovery properties to ethanol and acetone. The sensitivities of the RuO2 modified petal-like ZnO based sensor to 100×10^-6 ethanol and acetone at 360 °C are 33 and 67, respectively. The response and recovery times of the sensor are 4 s and 9 s to 10×10^-6 ethanol, and are 3 s and 10 s to 10×10^-6 acetone, respectively.展开更多
Hazardous gases have been strongly associated with being a detriment to human life within the environment The development of a reliable gas sensor with high response and selectivity is of great signifcance for detecti...Hazardous gases have been strongly associated with being a detriment to human life within the environment The development of a reliable gas sensor with high response and selectivity is of great signifcance for detecting different hazardous gases.TiO_(2) nanomaterials are promising candidates with great potential and excellent per-formance in gas sensor applications,such as hydrogen,acetone,ammonia,and ethanol detection.This review begins with a detailed discussion of the di ferent dimensional morphologies of TiO_(2),whitch affect the gas sensing performance of TiO_(2) sensors.The diverse morphologies of TiO_(2) can easily be tuned by regulating the manufacturing conditions.Meanwhile,they exhibit unique characteristics for detecting gases,including large specific suface area,superior elecron tr ansport rates,extraordinary pemmeability,and active reaction sites,which offer new opportunities to improve the gas sensing properties.In addition,a variety of efforts have been made to functional TiO_(2) nanomaterials to further enhance sensing properties,including TiO_(2)-based composites and light-assisted gas sensors.The enhanced gas sensing mechanisms of multi-component composite nano-materials based on TiO_(2) include loaded noble metals,doped elements,constructed heterojunctions,and com-pounded with other functional materials.Finally,several studies have been summarized to demonstate the compar ative sensing properties of TiO_(2)-based gas sensors.展开更多
This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM...This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM), selective area electron diffraction and high resolution TEM, respectively. In addition, the room-temperature (RT) gas sensing properties of Cr2O3 HNs and conventional powders (CPs) were investigated by means of the surface photovoltage technique. The experimental data demonstrate that the RT gas sensor of the as-fabricated HNs reaches below 5 ppm whereas that of the CPs is about 40 ppm, which results from there being much more adsorbed and desorbed oxygen in HNs than in CPs at RT. The as-prepared Cr2O3 HNs could have potential applications as RT nanosensors.展开更多
Hexagonal WO_3 nanorods were synthesized through a facile hydrothermal method. The nanorods properties were investigated by scanning electron microscope(SEM), transmission electron microscope(TEM), energy dispersi...Hexagonal WO_3 nanorods were synthesized through a facile hydrothermal method. The nanorods properties were investigated by scanning electron microscope(SEM), transmission electron microscope(TEM), energy dispersive spectroscopy(EDS), and x-ray diffraction(XRD). The NO_2-sensing performances in terms of sensor response, response/recovery times and repeatability at room temperature were optimized by varying the heat treatment temperature of WO_3 nanorods. The optimized NO_2sensor(400-℃-annealed WO_3 nanorods) showed an ultra-high sensor response of 3.2 and short response time of 1 s to 5-ppm NO_2. In addition, the 400-℃-annealed sample exhibited more stable repeatability.Furthermore, dynamic responses measurements of annealed samples showed that all the annealed WO_3 nanorods sensors presented p-type behaviors. We suppose the p-type behavior of the WO_3 nanorods sensor to be that an inversion layer is formed in the space charge layer when the sensor is exposed to NO_2 at room temperature.Therefore, the 400-℃-annealed WO_3 nanorods sensor is one of the most energy conservation candidates to detect NO_2 at room temperature.展开更多
基金Projects(60806032,20975107) supported by the National Natural Science Foundation of ChinaProject(2009R10064) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry,China+2 种基金 Project(2009R10064) supported by "Qianjiang Talent Program"Projects(2009A610058,2009A610030) supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.WONG Magna Fund in Ningbo University,China
文摘SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2021R1I1A1A0105621313, No. 2022R1F1A1074441, No. 2022K1A3A1A20014496, and No. 2022R1F1A1074083)supported by the Ministry of Education Funding (No. RIS 2021-004)supported by the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00284318).
文摘In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
基金financially supported by the National Natural Science Foundation of China(No.20871071)the Science and Technology Commission Foundation of Tianjin(No.09JCYBJC03600 and 10JCYBJC03900)
文摘Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.
基金Supported by the Bandar Abbas Branch of the Islamic Azad University
文摘Tin oxide (SnO2) is one of the most promising transparent conducting oxide materials, which is widely used in thin film gas sensors. We investigate the dependence of the deposition time on structural, morphologicaJ and hydrogen gas sensing properties of SnO2 thin films synthesized by dc magnetron sputtering. The deposited samples are characterized by XRD, SEM, AFM, surface area measurements and surface profiler. Also the H2 gas sensing properties of SnO2 deposited samples are performed against a wide range of operating temperature. The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO2 films strongly depends on the deposition time. SEM and AFM analyses reveal that the size of nanoparticles or agglomerates, and both average and rms surface roughness is enhanced with the increasing deposition time. Also gas sensors based on these SnO2 nanolayers show an acceptable response to hydrogen at various operating temperatures.
文摘This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n—C_6H_(14)and n—C_7H_(16),we find that the components have selectivity to CH_3COCH_3, C_2H_5OH and that the ideal amount of Pr_6O_(11) in the components is about I.Owt%.The experiments also show that with the increase of the amount of Pr_6O_(11),the ideal working temperature,the response and restoration time decrease.
文摘Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 gas sensing of were studied. Results showed that the PEDOT:PSS+nc-TiO2 film with a content of 9.0 wt% of TiO2 is most suitable for both the hole transport layer and the NH3 sensing. The responding time of the sensor made from this composite film reached a value as fast as 20 s. The rapid responsiveness to NH3 gas was attributed to the efficient movement of holes as the major charge carriers in PEDOT:PSS+nc-TiO2 composite films. Useful applications in organic electronic devices like light emitting diodes and gas thin film sensors can be envisaged.
基金support of the National Natural Science Foundation of China(no.61973223)Support Plan for Innovative Talents in Colleges and Universities in Liaoning Province(no.2020389)+3 种基金Liaoning Educational Department Foundation(no LJ2020001)Liao Ning Revitalization Talents Program(no.XLYC2007051)Natural Science Foundation of Liaoning Province(nos.2019-ZD-0072,2021-MS-257)Young and middle-aged scientific and technological innovation talents of Shenyang Science and Technology Bureau(no.RC200352).
文摘WO3 nanoparticles were successfully deposited onto SiO_(2)/Si substrates equipped with a pair of interdigitated Pt electrodes by heating tungsten filaments in a vacuum chamber. The morphology and structure of the obtained WO3 nanoparticles were characterized by means of field emission scanning electron microscopy (FESEM) and X-ray diffractometer (XRD). The results revealed that these nanoparticles show a sphere-like structure and their sizes depend on deposing pressure. Furthermore, the NO_(2) sensing properties of WO3 nanoparticles were studied. The intrinsic WO3 nanoparticles with small size exhibit surprisingly high response to ppb-level NO_(2), low detection limit, excellent selectivity, and good stability at a very low operating temperature, demonstrating their potential in monitoring ppb-level NO_(2) at low power consumption. In addition, an in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurement was carried out to propose the NO_(2) sensing mechanism, which demonstrates that adsorbed nitrate and nitrite species are the main species on WO3 surface. Furthermore, the intensity and the sensing response show the same trend with respect to the temperature, indicating that nitrate and nitrite species play a joint role in NO_(2) sensing behavior on WO3 surface.
基金Projects(61079010)supported by the National Natural Science Foundation of China and the Civil Aviation Administration of ChinaProject(3122013P001)supported by the Significant Pre-research Funds of Civil Aviation University of ChinaProject(2014)supported by the Science and Technology Innovation Guide Funds of Civil Aviation Administration of China
文摘Petal-like ZnO nanosheets were synthesized with zinc nitrate hexahydrate and sodium hydroxide as starting materials in ammonia and ethanol mixture solution. RuO2 modified ZnO nanosheets were also prepared by a calcination route. The as-prepared products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, and its specific BET surface area was calculated by nitrogen adsorption method. The sensitivity, response and recovery speed were examined. The results show that RuO2 modified petal-like ZnO based sensor exhibits a high sensitivity, a low detection limit, fast response and recovery properties to ethanol and acetone. The sensitivities of the RuO2 modified petal-like ZnO based sensor to 100×10^-6 ethanol and acetone at 360 °C are 33 and 67, respectively. The response and recovery times of the sensor are 4 s and 9 s to 10×10^-6 ethanol, and are 3 s and 10 s to 10×10^-6 acetone, respectively.
基金National Natural Science Foundation of China(No.61761047 and 41876055)the Yunnan Provincial Depart-ment of Science and Technology through the Key Project for the Science and Technology(Grant No.2017FA025)Program for hnovative Research Team(in Science and Technology)in University of Yunnan Province.
文摘Hazardous gases have been strongly associated with being a detriment to human life within the environment The development of a reliable gas sensor with high response and selectivity is of great signifcance for detecting different hazardous gases.TiO_(2) nanomaterials are promising candidates with great potential and excellent per-formance in gas sensor applications,such as hydrogen,acetone,ammonia,and ethanol detection.This review begins with a detailed discussion of the di ferent dimensional morphologies of TiO_(2),whitch affect the gas sensing performance of TiO_(2) sensors.The diverse morphologies of TiO_(2) can easily be tuned by regulating the manufacturing conditions.Meanwhile,they exhibit unique characteristics for detecting gases,including large specific suface area,superior elecron tr ansport rates,extraordinary pemmeability,and active reaction sites,which offer new opportunities to improve the gas sensing properties.In addition,a variety of efforts have been made to functional TiO_(2) nanomaterials to further enhance sensing properties,including TiO_(2)-based composites and light-assisted gas sensors.The enhanced gas sensing mechanisms of multi-component composite nano-materials based on TiO_(2) include loaded noble metals,doped elements,constructed heterojunctions,and com-pounded with other functional materials.Finally,several studies have been summarized to demonstate the compar ative sensing properties of TiO_(2)-based gas sensors.
基金sponsored by the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No 2008 HASTIT002)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province of Chinathe National Natural Science Foundation of China (Grant No 20941002)
文摘This paper reports that Cr2O3 hollow nanospheres (HNs) were synthesized via a hydrothermal approach and characterized by scanning electron microscopy, x-ray powder diffraction, transmission electron microscopy (TEM), selective area electron diffraction and high resolution TEM, respectively. In addition, the room-temperature (RT) gas sensing properties of Cr2O3 HNs and conventional powders (CPs) were investigated by means of the surface photovoltage technique. The experimental data demonstrate that the RT gas sensor of the as-fabricated HNs reaches below 5 ppm whereas that of the CPs is about 40 ppm, which results from there being much more adsorbed and desorbed oxygen in HNs than in CPs at RT. The as-prepared Cr2O3 HNs could have potential applications as RT nanosensors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60771019,61271070,and 61274074)the Tianjin Key Research Program of Application Foundation and Advanced Technology,China(Grant No.11JCZDJC15300)
文摘Hexagonal WO_3 nanorods were synthesized through a facile hydrothermal method. The nanorods properties were investigated by scanning electron microscope(SEM), transmission electron microscope(TEM), energy dispersive spectroscopy(EDS), and x-ray diffraction(XRD). The NO_2-sensing performances in terms of sensor response, response/recovery times and repeatability at room temperature were optimized by varying the heat treatment temperature of WO_3 nanorods. The optimized NO_2sensor(400-℃-annealed WO_3 nanorods) showed an ultra-high sensor response of 3.2 and short response time of 1 s to 5-ppm NO_2. In addition, the 400-℃-annealed sample exhibited more stable repeatability.Furthermore, dynamic responses measurements of annealed samples showed that all the annealed WO_3 nanorods sensors presented p-type behaviors. We suppose the p-type behavior of the WO_3 nanorods sensor to be that an inversion layer is formed in the space charge layer when the sensor is exposed to NO_2 at room temperature.Therefore, the 400-℃-annealed WO_3 nanorods sensor is one of the most energy conservation candidates to detect NO_2 at room temperature.