锅炉燃烧优化在电厂锅炉经济稳定运行中起着重要作用,NO_(x)排放预测是其中的一个基本环节,因此提出了一种基于改进蜣螂优化算法优化卷积神经网络(convolutional neural network,CNN)与双向长短期记忆神经网络(long short term memory,L...锅炉燃烧优化在电厂锅炉经济稳定运行中起着重要作用,NO_(x)排放预测是其中的一个基本环节,因此提出了一种基于改进蜣螂优化算法优化卷积神经网络(convolutional neural network,CNN)与双向长短期记忆神经网络(long short term memory,LSTM)的组合模型超参数的超超临界锅炉NO_(x)排放预测的方法。首先通过Pearson相关性判定与NO_(x)排放相关的特征参数;其次建立CNN-LSTM预测模型,利用卷积神经网络CNN提取分层数据结构,长短期记忆网络挖掘长期依赖关系,然后结合佳点集、t分布变异策略对蜣螂算法进行改进,用改进后的算法对LSTM超参数进行优化得到最终预测模型;最后与其他神经网络模型进行对比验证。以某660 MW机组锅炉深度调峰实际数据进行预测,结果得到NO_(x)排放浓度实际值与预测值的平均绝对误差为3.3516,平均相对误差为2.4667,数据结果表明该预测模型具有更准确的预测效果。展开更多
为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范...为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。展开更多
文摘锅炉燃烧优化在电厂锅炉经济稳定运行中起着重要作用,NO_(x)排放预测是其中的一个基本环节,因此提出了一种基于改进蜣螂优化算法优化卷积神经网络(convolutional neural network,CNN)与双向长短期记忆神经网络(long short term memory,LSTM)的组合模型超参数的超超临界锅炉NO_(x)排放预测的方法。首先通过Pearson相关性判定与NO_(x)排放相关的特征参数;其次建立CNN-LSTM预测模型,利用卷积神经网络CNN提取分层数据结构,长短期记忆网络挖掘长期依赖关系,然后结合佳点集、t分布变异策略对蜣螂算法进行改进,用改进后的算法对LSTM超参数进行优化得到最终预测模型;最后与其他神经网络模型进行对比验证。以某660 MW机组锅炉深度调峰实际数据进行预测,结果得到NO_(x)排放浓度实际值与预测值的平均绝对误差为3.3516,平均相对误差为2.4667,数据结果表明该预测模型具有更准确的预测效果。
文摘为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。