Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by...Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,展开更多
An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatem...An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.展开更多
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to t...Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.展开更多
NO oxidation is the key reaction for the oxidative NO x removal process.In this work,the catalytic NO oxidation performance of the Al2O3 supported metal oxide catalysts(M-Al2O3,M=V,Mn,Fe,Co,Ni and Ce)is evaluated.The ...NO oxidation is the key reaction for the oxidative NO x removal process.In this work,the catalytic NO oxidation performance of the Al2O3 supported metal oxide catalysts(M-Al2O3,M=V,Mn,Fe,Co,Ni and Ce)is evaluated.The oxidation product is absorbed by the alkaline solution for NO x removal.The NO oxidation activity increases in the following order:V<<Ce<Ni<Fe<Co<Mn.As the NO oxidation involves the O uptake into the metal oxide lattice and oxidation of the adsorbed NO by the lattice O,the highest activity of Mn is attributed to the appropriate redox potential of Mn,which favors both the O uptake and the NO oxidation steps.For all the M-Al2O3 catalysts,there is an intermediate temperature to achieve maximum NO conversion,which is lower for more efficient M-Al2O3 catalyst.The temperature dependence suggests that the NO oxidation at low temperature is kinetically controlled while it is thermodynamically limited at higher temperature.The NO x removal ratio by the alkaline solution absorption increases with the NO2/NO ratio,with a maximum removal ratio of 80%when the NO2/NO ratio is higher than 3,indicating that a very high NO conversion is unnecessary.展开更多
Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two differ...Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes, wire- cylinder reactor, pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency of 90% was observed for the pipe-cylinder reactor as compared to that of 53.4% for the wire-cylinder reactor. Furthermore, for the same energy consumed per NO molecule (about 73 eV/NO molecule), the removal efficiency increased from 67% for the wire- cylinder to about 98% for the pipe-cylinder which was quite appreciable.展开更多
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and int...Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.展开更多
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio...Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.展开更多
Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrosp...Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.展开更多
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of...The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.展开更多
Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha...Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2)and H2O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2)are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2)and H2O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.展开更多
Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation stra...Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.展开更多
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula...The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented.展开更多
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and...Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.展开更多
BACKGROUND Open reduction and internal fixation represent prevalent orthopedic procedures,sparking ongoing discourse over whether to retain or remove asymptomatic implants.Achieving consensus on this matter is paramou...BACKGROUND Open reduction and internal fixation represent prevalent orthopedic procedures,sparking ongoing discourse over whether to retain or remove asymptomatic implants.Achieving consensus on this matter is paramount for orthopedic surgeons.This study aims to quantify the impact of routine implant removal on patients and healthcare facilities.A retrospective analysis of implant removal cases from 2016 to 2022 at King Fahad Hospital of the University(KFHU)was conducted and subjected to statistical scrutiny.Among these cases,44%necessitated hospitalization exceeding one day,while 56%required only a single day.Adults exhibited a 55%need for extended hospital stays,contrasting with 22.8%among the pediatric cohort.The complication rate was 6%,with all patients experiencing at least one complication.Notably,34.1%required sick leave and 4.8%exceeded 14 d.General anesthesia was predominant(88%).Routine implant removal introduces unwarranted complications,particularly in adults,potentially prolonging hospitalization.This procedure strains hospital resources,tying up the operating room that could otherwise accommodate critical surgeries.Clearly defined institutional guidelines are imperative to regulate this practice.AIM To measure the burden of routine implant removal on the patients and hospital.METHODS This is a retrospective analysis study of 167 routine implant removal cases treated at KFHU,a tertiary hospital in Saudi Arabia.Data were collected in the orthopedic department at KFHU from February 2016 to August 2022,which includes routine asymptomatic implant removal cases across all age categories.Nonroutine indications such as infection,pain,implant failure,malunion,nonunion,restricted range of motion,and prominent hardware were excluded.Patients who had external fixators removed or joints replaced were also excluded.RESULTS Between February 2016 and August 2022,360 implants were retrieved;however,only 167 of those who met the inclusion criteria were included in this study.The remaining implants were rejected due to exclusion criteria.Among the cases,44%required more than one day in the hospital,whereas 56%required only one day.55%of adults required more than one day of hospitalization,while 22.8%of pediatric patients required more than one day of inpatient care.The complication rate was 6%,with each patient experiencing at least one complication.Sick leave was required in 34.1%of cases,with 4.8%requiring more than 14 d.The most common type of anesthesia used in the surgeries was general anesthesia(88%),and the mean(SD)surgery duration was 77.1(54.7)min.CONCLUSION Routine implant removal causes unnecessary complications,prolongs hospital stays,depletes resources and monopolizing operating rooms that could serve more critical procedures.展开更多
Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva...Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.展开更多
In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
Based on the monitoring data of PM_(2.5) concentration in Bengbu Environmental Monitoring Station and precipitation observation data of Bengbu National Meteorological Observation Station from 2016 to 2019, the influen...Based on the monitoring data of PM_(2.5) concentration in Bengbu Environmental Monitoring Station and precipitation observation data of Bengbu National Meteorological Observation Station from 2016 to 2019, the influence of precipitation on PM_(2.5) mass concentration in Bengbu City was analyzed. The results show that precipitation had a washing and removal effect on PM_(2.5) in the air, and the removal effect was related to precipitation level, precipitation intensity, precipitation duration and PM_(2.5) concentration. The removal effect of precipitation on PM_(2.5) increased with the increase of precipitation level, and the seasonal difference was obvious. Precipitation intensity was positively correlated with the removal effect of PM_(2.5) , but the average removal rate began to decline when precipitation intensity exceeded 10 mm. With the increase of precipitation intensity, the proportion of positive removal showed an overall upward trend, but there was a low-value area as precipitation intensity was 3-10 mm. Precipitation duration was also positively correlated with the removal effect of PM_(2.5) , and there was a low-value area when precipitation duration was 10-15 h. When PM_(2.5) concentration was low before the precipitation process began, the removal effect was not good, and the average removal rate was negative. As PM_(2.5) concentration was high before the precipitation process started, the removal effect was obvious.展开更多
BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after...BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.展开更多
The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
文摘Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,
文摘An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.
文摘Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.
基金supported by the research funds from RIPP, SINOPEC
文摘NO oxidation is the key reaction for the oxidative NO x removal process.In this work,the catalytic NO oxidation performance of the Al2O3 supported metal oxide catalysts(M-Al2O3,M=V,Mn,Fe,Co,Ni and Ce)is evaluated.The oxidation product is absorbed by the alkaline solution for NO x removal.The NO oxidation activity increases in the following order:V<<Ce<Ni<Fe<Co<Mn.As the NO oxidation involves the O uptake into the metal oxide lattice and oxidation of the adsorbed NO by the lattice O,the highest activity of Mn is attributed to the appropriate redox potential of Mn,which favors both the O uptake and the NO oxidation steps.For all the M-Al2O3 catalysts,there is an intermediate temperature to achieve maximum NO conversion,which is lower for more efficient M-Al2O3 catalyst.The temperature dependence suggests that the NO oxidation at low temperature is kinetically controlled while it is thermodynamically limited at higher temperature.The NO x removal ratio by the alkaline solution absorption increases with the NO2/NO ratio,with a maximum removal ratio of 80%when the NO2/NO ratio is higher than 3,indicating that a very high NO conversion is unnecessary.
文摘Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes, wire- cylinder reactor, pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency of 90% was observed for the pipe-cylinder reactor as compared to that of 53.4% for the wire-cylinder reactor. Furthermore, for the same energy consumed per NO molecule (about 73 eV/NO molecule), the removal efficiency increased from 67% for the wire- cylinder to about 98% for the pipe-cylinder which was quite appreciable.
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
基金financial support from the National Key Research and Development Program of China(2018YFB0605003).
文摘Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.
基金supported by the National Natural Science Foundation of China(52375420,52005134 and51675453)Natural Science Foundation of Heilongjiang Province of China(YQ2023E014)+5 种基金Self-Planned Task(No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT)China Postdoctoral Science Foundation(2022T150163)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220463)State Key Laboratory of Robotics and System(HIT)(SKLRS-2022-ZM-14)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(2022KM004)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024 and FRFCU5710051122)。
文摘Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.
基金supported by the Opening Project of the Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource(Grant No.2021ABPCR010)the Natural Science Research Project of Jiangsu Higher Education Institutions of China(Grants No.20KJB150035,21KJD610004,and 21KJA530004).
文摘Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.
基金supported by the Natural Scienceof Shandong Province,China(ZR2019MEE033)。
文摘The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.
文摘Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2)and H2O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2)are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2)and H2O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.
基金jointly supported by the National Key Research and Development Program of China (Grant No. 2022YFC3105000)the Youth Innovation Promotion Association of CAS (2022074)+3 种基金the National Natural Science Foundation of China (Grant Nos. 42005123, 42275173 and 41706028)the National Key Research and Development Program of China(2022YFE0106500)the 7th Youth Talent Support Project of Ningxia Hui Autonomous Region Association for Science and TechnologyNational Key Scientific and Technological Infrastructure project ‘‘Earth System Science Numerical Simulator Facility’’(EarthLab) for supporting the simulations in this study
文摘Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.
文摘The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented.
基金supported by the National Key Research and Development Program of China(2016YFD0600201)the National Nonprofit Institute Research Grant of CAF(CAFYBB2017ZB003)+1 种基金the National Natural Science Foundation of China(3187071631670720)。
文摘Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.
文摘BACKGROUND Open reduction and internal fixation represent prevalent orthopedic procedures,sparking ongoing discourse over whether to retain or remove asymptomatic implants.Achieving consensus on this matter is paramount for orthopedic surgeons.This study aims to quantify the impact of routine implant removal on patients and healthcare facilities.A retrospective analysis of implant removal cases from 2016 to 2022 at King Fahad Hospital of the University(KFHU)was conducted and subjected to statistical scrutiny.Among these cases,44%necessitated hospitalization exceeding one day,while 56%required only a single day.Adults exhibited a 55%need for extended hospital stays,contrasting with 22.8%among the pediatric cohort.The complication rate was 6%,with all patients experiencing at least one complication.Notably,34.1%required sick leave and 4.8%exceeded 14 d.General anesthesia was predominant(88%).Routine implant removal introduces unwarranted complications,particularly in adults,potentially prolonging hospitalization.This procedure strains hospital resources,tying up the operating room that could otherwise accommodate critical surgeries.Clearly defined institutional guidelines are imperative to regulate this practice.AIM To measure the burden of routine implant removal on the patients and hospital.METHODS This is a retrospective analysis study of 167 routine implant removal cases treated at KFHU,a tertiary hospital in Saudi Arabia.Data were collected in the orthopedic department at KFHU from February 2016 to August 2022,which includes routine asymptomatic implant removal cases across all age categories.Nonroutine indications such as infection,pain,implant failure,malunion,nonunion,restricted range of motion,and prominent hardware were excluded.Patients who had external fixators removed or joints replaced were also excluded.RESULTS Between February 2016 and August 2022,360 implants were retrieved;however,only 167 of those who met the inclusion criteria were included in this study.The remaining implants were rejected due to exclusion criteria.Among the cases,44%required more than one day in the hospital,whereas 56%required only one day.55%of adults required more than one day of hospitalization,while 22.8%of pediatric patients required more than one day of inpatient care.The complication rate was 6%,with each patient experiencing at least one complication.Sick leave was required in 34.1%of cases,with 4.8%requiring more than 14 d.The most common type of anesthesia used in the surgeries was general anesthesia(88%),and the mean(SD)surgery duration was 77.1(54.7)min.CONCLUSION Routine implant removal causes unnecessary complications,prolongs hospital stays,depletes resources and monopolizing operating rooms that could serve more critical procedures.
文摘Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
文摘Based on the monitoring data of PM_(2.5) concentration in Bengbu Environmental Monitoring Station and precipitation observation data of Bengbu National Meteorological Observation Station from 2016 to 2019, the influence of precipitation on PM_(2.5) mass concentration in Bengbu City was analyzed. The results show that precipitation had a washing and removal effect on PM_(2.5) in the air, and the removal effect was related to precipitation level, precipitation intensity, precipitation duration and PM_(2.5) concentration. The removal effect of precipitation on PM_(2.5) increased with the increase of precipitation level, and the seasonal difference was obvious. Precipitation intensity was positively correlated with the removal effect of PM_(2.5) , but the average removal rate began to decline when precipitation intensity exceeded 10 mm. With the increase of precipitation intensity, the proportion of positive removal showed an overall upward trend, but there was a low-value area as precipitation intensity was 3-10 mm. Precipitation duration was also positively correlated with the removal effect of PM_(2.5) , and there was a low-value area when precipitation duration was 10-15 h. When PM_(2.5) concentration was low before the precipitation process began, the removal effect was not good, and the average removal rate was negative. As PM_(2.5) concentration was high before the precipitation process started, the removal effect was obvious.
基金Supported by the New National Excellence Program of the Ministry for Innovation and Technology From the Source of the National Research,Development and Innovation Fund,No.ÚNKP-22-4-SZTE-296,No.ÚNKP-23-3-SZTE-268,and No.ÚNKP-23-5-SZTE-719the EU’s Horizon 2020 Research and Innovation Program under Grant Agreement,No.739593.
文摘BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.