With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,tu...With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experimental data. With the application of the simulation results to the experimental data to fit some important kinetic parameters in the equation of O atom model and revision of the equation later, this article obtained a new NO formation rate model. It has been proved that the prediction of the developed model coincides well with the measurements.展开更多
A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural ...A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOx concentration is reduced. The same result can be obtained from chemical equilibrium analysis.展开更多
Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- me...Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.展开更多
This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and th...This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.展开更多
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using...A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.展开更多
With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, t...With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experi- mental data. With the application of the simulation results to the experimental data to fit some important kinetic pa- rameters in the equation of O atom model and revision of the equation later, this article obtained a new NO forma- tion rate model. It has been proved that the prediction of the developed model coincides well with the measure- ments.展开更多
使用可实现k-ε双方程模型,对一台1 000 MW超超临界对冲旋流燃烧锅炉NOx生成特性进行数值模拟。对燃烧器拟改进结构与原始结构NOx生成特性进行对比,并对燃烧器稳燃特性增强后过量空气系数、燃尽风(After air port,AAP)与侧燃尽风(Side a...使用可实现k-ε双方程模型,对一台1 000 MW超超临界对冲旋流燃烧锅炉NOx生成特性进行数值模拟。对燃烧器拟改进结构与原始结构NOx生成特性进行对比,并对燃烧器稳燃特性增强后过量空气系数、燃尽风(After air port,AAP)与侧燃尽风(Side air port,SAP)率、燃烧器投运方式及锅炉负荷等因素对NOx排放特性的影响进行计算。计算与分析结果表明,燃烧器稳燃特性增强后炉膛温度场变化较大,无油点火燃烧器温度场变化也非常明显,锅炉NOx排放量无明显增长;同时,根据NOx沿炉高方向的变化规律,可以将炉膛沿炉高分为浓度迅速升高、浓度缓慢下降、浓度快速下降和浓度缓慢上升4个区段,AAP与SAP风率越高、过量空气系数越小,炉膛出口NOx排放越少;同等负荷条件下,投入下层燃烧器数量较多时NOx排放量明显下降。并将计算结果和改进前后试验数据进行对比,计算误差在10%以内,数值模拟结果比较准确地预测了燃烧器改进后NOx生成与排放量,为燃烧器的设计和运行提供一定的理论依据。展开更多
文摘With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experimental data. With the application of the simulation results to the experimental data to fit some important kinetic parameters in the equation of O atom model and revision of the equation later, this article obtained a new NO formation rate model. It has been proved that the prediction of the developed model coincides well with the measurements.
基金Supported by the National Natural Science Foundation of China (No. 50376068).
文摘A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOx concentration is reduced. The same result can be obtained from chemical equilibrium analysis.
文摘Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.
基金Supported by the National Iranian Oil Company (NIOC)
文摘This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.
基金The project sponsored by the Foundation for Doctorate Thesis of Tsinghua Universitythe National Key Project in 1999-2004 sponsored by the Ministry of Science and Technology of China
文摘A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the well-known EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.
文摘With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experi- mental data. With the application of the simulation results to the experimental data to fit some important kinetic pa- rameters in the equation of O atom model and revision of the equation later, this article obtained a new NO forma- tion rate model. It has been proved that the prediction of the developed model coincides well with the measure- ments.
文摘使用可实现k-ε双方程模型,对一台1 000 MW超超临界对冲旋流燃烧锅炉NOx生成特性进行数值模拟。对燃烧器拟改进结构与原始结构NOx生成特性进行对比,并对燃烧器稳燃特性增强后过量空气系数、燃尽风(After air port,AAP)与侧燃尽风(Side air port,SAP)率、燃烧器投运方式及锅炉负荷等因素对NOx排放特性的影响进行计算。计算与分析结果表明,燃烧器稳燃特性增强后炉膛温度场变化较大,无油点火燃烧器温度场变化也非常明显,锅炉NOx排放量无明显增长;同时,根据NOx沿炉高方向的变化规律,可以将炉膛沿炉高分为浓度迅速升高、浓度缓慢下降、浓度快速下降和浓度缓慢上升4个区段,AAP与SAP风率越高、过量空气系数越小,炉膛出口NOx排放越少;同等负荷条件下,投入下层燃烧器数量较多时NOx排放量明显下降。并将计算结果和改进前后试验数据进行对比,计算误差在10%以内,数值模拟结果比较准确地预测了燃烧器改进后NOx生成与排放量,为燃烧器的设计和运行提供一定的理论依据。