Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-redu...Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-reduction performance and the content of Pt could be reduced by 50%. Not only the addition of 5Mn/15Ba/Al2O3 to 1Pt/15Ba/Al2O3 could improve its storage ability, but also enhance the NOx conversion consequently. NOx conversion over the combined catalysts (the combined catalysts Ⅰ and Ⅱ) was increased under dynamic lean-rich burn conditions, the maximum NOx conversion increased from 69.4% to respectively 78.8% and 75.7% over two combined catalysts.展开更多
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati...Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.展开更多
Abstract: Mn/Ba/Al2O3 catalyst for NO oxidation-storage and Pt/Ba/Al2O3 catalyst mixed with Mn/Ba/Al2O3 for NOx storage-reduction by hydrogen were investigated. The results showed that Mn/Ba/Al2O3 had large nitrogen ...Abstract: Mn/Ba/Al2O3 catalyst for NO oxidation-storage and Pt/Ba/Al2O3 catalyst mixed with Mn/Ba/Al2O3 for NOx storage-reduction by hydrogen were investigated. The results showed that Mn/Ba/Al2O3 had large nitrogen oxides storage capacity (397.9 μmolg^-1) under lean burn condition. When Pt/Ba/Al2O3 catalyst was mixed with Mn/Ba/Al2O3 in equal weight proportion, the NOx conversion increased between 250 ℃ and 500 ℃ under the dynamic lean-rich burn conditions, and the maximum NOx conversion increased from 95.4% to 98.2%. Mn/Ba/Al2O3 has promoted NOx storing in the lean stage and improved NOx reduction efficiency in the rich stage, these might result in higher NOx conversion over the low Pt loading content catalyst.展开更多
基金The National Natural Science Foundation of China(Grant No.20476032)the Natural Science Foundation of Guangdong Province(Grant No.06025654)are gratefully acknowledged for financial supports of this project.
文摘Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-reduction performance and the content of Pt could be reduced by 50%. Not only the addition of 5Mn/15Ba/Al2O3 to 1Pt/15Ba/Al2O3 could improve its storage ability, but also enhance the NOx conversion consequently. NOx conversion over the combined catalysts (the combined catalysts Ⅰ and Ⅱ) was increased under dynamic lean-rich burn conditions, the maximum NOx conversion increased from 69.4% to respectively 78.8% and 75.7% over two combined catalysts.
基金supported by the National Natural Science Foundation of China,Nos.82271444(to JP),82271268(to BZ),and 82001346(to YL)the National Key Research and Development Program of China,No.2022YFE0210100(to BZ)。
文摘Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.
基金The National Natural Science Foundation of China (No. 20476032)Natural Science Foundation of Guangdong Province (No. 030951) are gratefully acknowledged for financial support for this project.
文摘Abstract: Mn/Ba/Al2O3 catalyst for NO oxidation-storage and Pt/Ba/Al2O3 catalyst mixed with Mn/Ba/Al2O3 for NOx storage-reduction by hydrogen were investigated. The results showed that Mn/Ba/Al2O3 had large nitrogen oxides storage capacity (397.9 μmolg^-1) under lean burn condition. When Pt/Ba/Al2O3 catalyst was mixed with Mn/Ba/Al2O3 in equal weight proportion, the NOx conversion increased between 250 ℃ and 500 ℃ under the dynamic lean-rich burn conditions, and the maximum NOx conversion increased from 95.4% to 98.2%. Mn/Ba/Al2O3 has promoted NOx storing in the lean stage and improved NOx reduction efficiency in the rich stage, these might result in higher NOx conversion over the low Pt loading content catalyst.