期刊文献+
共找到1,746篇文章
< 1 2 88 >
每页显示 20 50 100
Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods 被引量:18
1
作者 张红亮 邹忠 +1 位作者 李劼 陈湘涛 《Journal of Central South University of Technology》 EI 2008年第1期39-43,共5页
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia... Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN. 展开更多
关键词 rotary kiln flame image image recognition shape descriptor artificial neural network support vector machine
下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:4
2
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC K-Nearest-Neighbor neural networks Random Forest Support vector machines
下载PDF
A Comparative Study of Support Vector Machine and Artificial Neural Network for Option Price Prediction 被引量:1
3
作者 Biplab Madhu Md. Azizur Rahman +3 位作者 Arnab Mukherjee Md. Zahidul Islam Raju Roy Lasker Ershad Ali 《Journal of Computer and Communications》 2021年第5期78-91,共14页
Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine lear... Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine learning techniques have been designed and developed to deal with the problem of predicting the future trend of option price. In this paper, we compare the effectiveness of Support Vector Machine (SVM) and Artificial Neural Network (ANN) models for the prediction of option price. Both models are tested with a benchmark publicly available dataset namely SPY option price-2015 in both testing and training phases. The converted data through Principal Component Analysis (PCA) is used in both models to achieve better prediction accuracy. On the other hand, the entire dataset is partitioned into two groups of training (70%) and test sets (30%) to avoid overfitting problem. The outcomes of the SVM model are compared with those of the ANN model based on the root mean square errors (RMSE). It is demonstrated by the experimental results that the ANN model performs better than the SVM model, and the predicted option prices are in good agreement with the corresponding actual option prices. 展开更多
关键词 machine Learning Support vector machine Artificial neural network PREDICTION Option Price
下载PDF
A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines
4
作者 Xiyang Li Bin Cheng +2 位作者 Hui Zhang Xianghan Zhang Zhi Yun 《Energy Engineering》 EI 2021年第6期1869-1886,共18页
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi... With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades. 展开更多
关键词 Support vector machine back propagation neural network particle swarm optimization blade icing assessment
下载PDF
Structural Reliability Analysis Based on Support Vector Machine and Dual Neural Network Direct Integration Method
5
作者 NIE Xiaobo LI Haibin 《Journal of Donghua University(English Edition)》 CAS 2021年第1期51-56,共6页
Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DN... Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DNN)is proposed.Firstly,SVM with good small sample learning ability is used to train small sample data,fit structural performance functions and establish regular integration regions.Secondly,DNN is approximated the integral function to achieve multiple integration in the integration region.Finally,structural reliability was obtained by DNN.Numerical examples are investigated to demonstrate the effectiveness of the present method,which provides a feasible way for the structural reliability analysis. 展开更多
关键词 support vector machine(SVM) neural network direct integration method structural reliability small sample data performance function
下载PDF
Fault Identification of Internal Combustion Engine based on Support Vector Machine and Fuzzy Neural Network
6
作者 CHEN Decheng HE Xinyu 《International Journal of Plant Engineering and Management》 2022年第3期144-157,共14页
The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of mach... The internal combustion engine is the main power source of current large⁃scale machinery and equipment.Overhaul and maintenance of its faults are important conditions for ensuring the safe and stable operation of machinery and equipment,and the identification of faults is a prerequisite.Therefore,the fault identification of internal combustion engines is one of the important directions of current research.In order to further improve the accuracy of the fault recognition of internal combustion engines,this paper takes a certain type of internal combustion engine as the research object,and constructs a support vector machine and a fuzzy neural network fault recognition model.The binary tree multi⁃class classification algorithm is used to determine the priority,and then the fuzzy neural network is verified.The feasibility of the model is proved through experiments,which can quickly identify the failure of the internal combustion engine and improve the failure processing efficiency. 展开更多
关键词 internal combustion engine support vector machine fuzzy neural network fault recognition
下载PDF
Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine 被引量:2
7
作者 Gwang-Hee Kim Jae-Min Shin +1 位作者 Sangyong Kim Yoonseok Shin 《Journal of Building Construction and Planning Research》 2013年第1期1-7,共7页
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin... Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects. 展开更多
关键词 ESTIMATING Construction COSTS Regression Analysis neural network Support vector machine
下载PDF
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
8
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 Artificial neural network (ANN) Back Propagation FALL Detection FALL Prevention GAIT Analysis SENSOR Support vector machine (SVM) WIRELESS SENSOR
下载PDF
Support Vector Machine and Artificial Neural Networks for Hydrological Cycles Classifications of a Water Reservoir in the Amazon
9
作者 Jean Carlos Arouche Freire Tarcisio da Costa Lobato +3 位作者 Jefferson Magalhaes de Morais Terezinha Ferreira de Oliveira Rachel Anne Hauser-Davis Augusto Cesar Fonseca Saraiva 《通讯和计算机(中英文版)》 2014年第2期111-117,共7页
关键词 支持向量机分类器 人工神经网络 水文循环 分类方法 亚马逊 水库 物理化学参数 计算智能技术
下载PDF
Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk
10
作者 Polin Rahman Ahmed Rifat +3 位作者 MD.IftehadAmjad Chy Mohammad Monirujjaman Khan Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期757-775,共19页
Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learni... Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learning models to predict heart failure.The fundamental concept is to compare the correctness of various Machine Learning(ML)algorithms and boost algorithms to improve models’accuracy for prediction.Some supervised algorithms like K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF),Logistic Regression(LR)are considered to achieve the best results.Some boosting algorithms like Extreme Gradient Boosting(XGBoost)and Cat-Boost are also used to improve the prediction using Artificial Neural Networks(ANN).This research also focuses on data visualization to identify patterns,trends,and outliers in a massive data set.Python and Scikit-learns are used for ML.Tensor Flow and Keras,along with Python,are used for ANN model train-ing.The DT and RF algorithms achieved the highest accuracy of 95%among the classifiers.Meanwhile,KNN obtained a second height accuracy of 93.33%.XGBoost had a gratified accuracy of 91.67%,SVM,CATBoost,and ANN had an accuracy of 90%,and LR had 88.33%accuracy. 展开更多
关键词 Heart failure prediction data visualization machine learning k-nearest neighbors support vector machine decision tree random forest logistic regression xgboost and catboost artificial neural network
下载PDF
Application of Feature Extraction through Convolution Neural Networks and SVM Classifier for Robust Grading of Apples 被引量:8
11
作者 Yuan CAI Clarence W.DE SILVA +2 位作者 Bing LI Liqun WANG Ziwen WANG 《Instrumentation》 2019年第4期59-71,共13页
This paper proposes a novel grading method of apples,in an automated grading device that uses convolutional neural networks to extract the size,color,texture,and roundness of an apple.The developed machine learning me... This paper proposes a novel grading method of apples,in an automated grading device that uses convolutional neural networks to extract the size,color,texture,and roundness of an apple.The developed machine learning method uses the ability of learning representative features by means of a convolutional neural network(CNN),to determine suitable features of apples for the grading process.This information is fed into a one-to-one classifier that uses a support vector machine(SVM),instead of the softmax output layer of the CNN.In this manner,Yantai apples with similar shapes and low discrimination are graded using four different approaches.The fusion model using both CNN and SVM classifiers is much more accurate than the simple k-nearest neighbor(KNN),SVM,and CNN model when used separately for grading,and the learning ability and the generalization ability of the model is correspondingly increased by the combined method.Grading tests are carried out using the automated grading device that is developed in the present work.It is verified that the actual effect of apple grading using the combined CNN-SVM model is fast and accurate,which greatly reduces the manpower and labor costs of manual grading,and has important commercial prospects. 展开更多
关键词 Apple Grading k-nearest Neighbour Method Convolutional neural network Support vector machine machine Learning
下载PDF
Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures
12
作者 Venkata Sunil Srikanth S.Krithiga 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期63-78,共16页
Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives train... Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives training feature samples that make closer isolation toward the infection part.Hence,it is expensive due to a metaheuristic search of features occupying the global region of interest(ROI)structures of input images.Thus,it may lead to the high computational complexity of the pre-trained DNN-based CABTD method.This paper proposes a novel ensemble pretrained DNN-based CABTD method using global-and local-ROI-structures of B-mode ultrasound images.It conveys the additional consideration of a local-ROI-structures for further enhan-cing the pretrained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality.The features are extracted at various depths(18,50,and 101)from the global and local ROI structures and feed to support vector machine for better classification.From the experimental results,it has been observed that the combined local and global ROI structure of small depth residual network ResNet18(0.8 in%)has produced significant improve-ment in pixel ratio as compared to ResNet50(0.5 in%)and ResNet101(0.3 in%),respectively.Subsequently,the pretrained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors(Benign and Malignant)and improve the diagnostic accuracy(86%)compared to Dense Net,Alex Net,VGG Net,and Google Net.Moreover,it reduces the computational complexity due to the small depth residual network ResNet18,respectively. 展开更多
关键词 Computer-aided diagnosis breast tumor B-mode ultrasound images deep neural network local-ROI-structures feature extraction support vector machine
下载PDF
Improving Performance of Recurrent Neural Networks Using Simulated Annealing for Vertical Wind Speed Estimation
13
作者 Shafiqur Rehman HilalH.Nuha +2 位作者 Ali Al Shaikhi Satria Akbar Mohamed Mohandes 《Energy Engineering》 EI 2023年第4期775-789,共15页
An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters ... An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively. 展开更多
关键词 Vertical wind speed estimation recurrent neural networks simulated annealing multilayer perceptron support vector machine
下载PDF
Predicting Stock Movement Using Sentiment Analysis of Twitter Feed with Neural Networks
14
作者 Sai Vikram Kolasani Rida Assaf 《Journal of Data Analysis and Information Processing》 2020年第4期309-319,共11页
External factors, such as social media and financial news, can have wide-spread effects on stock price movement. For this reason, social media is considered a useful resource for precise market predictions. In this pa... External factors, such as social media and financial news, can have wide-spread effects on stock price movement. For this reason, social media is considered a useful resource for precise market predictions. In this paper, we show the effectiveness of using Twitter posts to predict stock prices. We start by training various models on the Sentiment 140 Twitter data. We found that Support Vector Machines (SVM) performed best (0.83 accuracy) in the sentimental analysis, so we used it to predict the average sentiment of tweets for each day that the market was open. Next, we use the sentimental analysis of one year’s data of tweets that contain the “stock market”, “stocktwits”, “AAPL” keywords, with the goal of predicting the corresponding stock prices of Apple Inc. (AAPL) and the US’s Dow Jones Industrial Average (DJIA) index prices. Two models, Boosted Regression Trees and Multilayer Perceptron Neural Networks were used to predict the closing price difference of AAPL and DJIA prices. We show that neural networks perform substantially better than traditional models for stocks’ price prediction. 展开更多
关键词 Tweets Sentiment Analysis with machine Learning Support vector machines (SVM) neural networks Stock Prediction
下载PDF
Stand basal area modelling for Chinese fir plantations using an artificial neural network model 被引量:6
15
作者 Shaohui Che Xiaohong Tan +5 位作者 Congwei Xiang Jianjun Sun Xiaoyan Hu Xiongqing Zhang Aiguo Duan Jianguo Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第5期1641-1649,共9页
Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearit... Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN. 展开更多
关键词 Chinese FIR BASAL area Artificial neural network Support vector machine Mixed-effect model
下载PDF
Collaborative Filtering and Artificial Neural Network Based Recommendation System for Advanced Applications 被引量:3
16
作者 Bharadwaja Krishnadev Mylavarapu 《Journal of Computer and Communications》 2018年第12期1-14,共14页
To make recommendation on items from the user for historical user rating several intelligent systems are using. The most common method is Recommendation systems. The main areas which play major roles are social networ... To make recommendation on items from the user for historical user rating several intelligent systems are using. The most common method is Recommendation systems. The main areas which play major roles are social networking, digital marketing, online shopping and E-commerce. Recommender system consists of several techniques for recommendations. Here we used the well known approach named as Collaborative filtering (CF). There are two types of problems mainly available with collaborative filtering. They are complete cold start (CCS) problem and incomplete cold start (ICS) problem. The authors proposed three novel methods such as collaborative filtering, and artificial neural networks and at last support vector machine to resolve CCS as well ICS problems. Based on the specific deep neural network SADE we can be able to remove the characteristics of products. By using sequential active of users and product characteristics we have the capability to adapt the cold start product ratings with the applications of the state of the art CF model, time SVD++. The proposed system consists of Netflix rating dataset which is used to perform the baseline techniques for rating prediction of cold start items. The calculation of two proposed recommendation techniques is compared on ICS items, and it is proved that it will be adaptable method. The proposed method can be able to transfer the products since cold start transfers to non-cold start status. Artificial Neural Network (ANN) is employed here to extract the item content features. One of the user preferences such as temporal dynamics is used to obtain the contented characteristics into predictions to overcome those problems. For the process of classification we have used linear support vector machine classifiers to receive the better performance when compared with the earlier methods. 展开更多
关键词 Artificial neural network Support vector machine RECOMMENDATION Systems COLD START Problems
下载PDF
Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks
17
作者 Vijay Khare Jayashree Santhosh +1 位作者 Sneh Anand Manvir Bhatia 《Journal of Biomedical Science and Engineering》 2010年第2期200-205,共6页
In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electr... In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electroencephalograph (EEG) signal. The three classifiers namely used were Multilayer Back propagation Neural Network, Support Vector Machine and Radial Basis Function Neural Network. In MLP-BP NN five training methods used were a) Gradient Descent Back Propagation b) Levenberg-Marquardt c) Resilient Back Propagation d) Conjugate Learning Gradient Back Propagation and e) Gradient Descent Back Propagation with movementum. 展开更多
关键词 ELECTROENCEPHALOGRAM (EEG) Wavelet Packet Transform (WPT) Support vector machine (SVM) Radial Basis Function neural network (RBFNN) Multilayer Back Propagation neural network (MLP-BPNN) Brain Computer Interface (BCI)
下载PDF
基于PLS特征提取和LS-SVM结合的NOx排放特性建模 被引量:59
18
作者 吕游 刘吉臻 +1 位作者 杨婷婷 孙伟毅 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第11期2418-2424,共7页
大型燃煤电站锅炉是大气NOx污染的主要来源之一,建立有效的NOx排放模型是燃烧优化降低NOx的基础。NOx的排放特性受多个热工变量的影响,并且各变量之间存在相关性和耦合性。基于某660 MW电站锅炉的现场运行数据,将偏最小二乘(PLS)方法与... 大型燃煤电站锅炉是大气NOx污染的主要来源之一,建立有效的NOx排放模型是燃烧优化降低NOx的基础。NOx的排放特性受多个热工变量的影响,并且各变量之间存在相关性和耦合性。基于某660 MW电站锅炉的现场运行数据,将偏最小二乘(PLS)方法与最小二乘支持向量机LS-SVM相结合,利用PLS对输入变量进行特征提取以降低维数和消除相关性,并把得到的特征矩阵作为LS-SVM的输入,建立了NOx排放的PLS-LSSVM模型,并以交叉验证为准则通过网格搜索来获得最优的模型参数。另外,将该模型与其他建模方法进行对比,结果表明通过PLS特征提取可以降低模型的复杂度,提高模型的泛化能力。 展开更多
关键词 特征提取 偏最小二乘 最小二乘支持向量机 nox排放 电站锅炉
下载PDF
基于煤种掺烧模式的锅炉燃烧NOx预测模型 被引量:9
19
作者 杨建国 叶凌云 +5 位作者 赵敏 赵虹 郦宜进 李敏 俞逾 邓芙蓉 《动力工程学报》 CAS CSCD 北大核心 2017年第11期870-875,共6页
结合某660 MW锅炉入炉煤种煤质、磨煤机组合方式、配风方式和锅炉运行参数等,利用支持向量机建立了锅炉燃烧NO_x预测模型,并利用该模型进行了应用模拟,在保持其他参数不变的情况下,研究了氧体积分数、燃尽风率、配风方式、煤种及磨煤机... 结合某660 MW锅炉入炉煤种煤质、磨煤机组合方式、配风方式和锅炉运行参数等,利用支持向量机建立了锅炉燃烧NO_x预测模型,并利用该模型进行了应用模拟,在保持其他参数不变的情况下,研究了氧体积分数、燃尽风率、配风方式、煤种及磨煤机组合方式对NO_x质量浓度的影响.结果表明:模型具有较好的准确性和泛化能力以及理想的调节性能;模型包含煤种及磨煤机组合方式信息,对于煤种煤质多变机组,提高了预测NO_x质量浓度的准确性,这对降低NO_x质量浓度和保证稳定燃烧的优化调整,尤其是对指导入炉煤调配及煤炭采购甚至实现"智慧燃料"具有重要意义. 展开更多
关键词 炉内掺烧 nox 预测模型 支持向量机 多煤种 磨煤机组合方式
下载PDF
基于果蝇优化算法的锅炉高效率低NOx燃烧建模 被引量:6
20
作者 张振星 孙保民 +1 位作者 信晶 LI Yuan 《热力发电》 北大核心 2014年第12期19-24,共6页
为了控制燃煤锅炉的NOx排放量并提高锅炉效率,对某超超临界1 000 MW机组锅炉的热态运行数据进行分析,基于支持向量回归机(SVM),建立了NOx排放和锅炉热效率的FOASVM模型,采用果蝇优化算法(FOA)对模型中的惩罚因子C、核函数参数g和不敏感... 为了控制燃煤锅炉的NOx排放量并提高锅炉效率,对某超超临界1 000 MW机组锅炉的热态运行数据进行分析,基于支持向量回归机(SVM),建立了NOx排放和锅炉热效率的FOASVM模型,采用果蝇优化算法(FOA)对模型中的惩罚因子C、核函数参数g和不敏感损失系数ε这3个参数寻优,并与遗传算法(GA)优化参数的预测模型进行比较。结果表明,FOASVM模型的预测精度更高,泛化能力更强,其中误差最大的NOx排放模型测试集数据的平均相对误差仅3.59%,能够精准地预测锅炉热效率和NOx排放,适合于在线建模预测,为大容量锅炉的进一步优化运行提供了良好的模型基础。 展开更多
关键词 超超临界 1 000MW机组 锅炉 效率 nox 排放 支持向量机 果蝇优化算法
下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部