The surface-based DNA computing is one of the methods of DNA computing which uses DNA strands immobilized on a solid surface. In this paper, we applied surface-based DNA computing for solving the dominating set proble...The surface-based DNA computing is one of the methods of DNA computing which uses DNA strands immobilized on a solid surface. In this paper, we applied surface-based DNA computing for solving the dominating set problem. At first step, surface-based DNA solution space was constructed by using appropriate DNA strands. Then, by application of a DNA parallel algorithm, dominating set problem was resolved in polynomial time.展开更多
In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “...In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.展开更多
The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and ap...The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications in optimal combination and linear programming fields. It can be difficultly solved by the electronic computer in exponential level time. Meanwhile in previous studies deoxyribonucleic acid (DNA) molecular operations usually were used to solve NP-complete continuous path search problems, e.g. HPP, traveling salesman problem, rarely for NP-hard problems with discrete vertices or edges solutions, such as the minimum vertex cover problem, graph coloring problem and so on. In this paper, we present a DNA algorithm for solving the MMP with DNA molecular operations. For an undirected graph with n vertices and m edges, we reasonably design fixed length DNA strands representing vertices and edges of the graph, take appropriate steps and get the solutions of the MMP in proper length range using O(n^3) time. We extend the application of DNA molecular operations and simultaneously simplify the complexity of the computation.展开更多
文摘The surface-based DNA computing is one of the methods of DNA computing which uses DNA strands immobilized on a solid surface. In this paper, we applied surface-based DNA computing for solving the dominating set problem. At first step, surface-based DNA solution space was constructed by using appropriate DNA strands. Then, by application of a DNA parallel algorithm, dominating set problem was resolved in polynomial time.
文摘In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.
文摘The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications in optimal combination and linear programming fields. It can be difficultly solved by the electronic computer in exponential level time. Meanwhile in previous studies deoxyribonucleic acid (DNA) molecular operations usually were used to solve NP-complete continuous path search problems, e.g. HPP, traveling salesman problem, rarely for NP-hard problems with discrete vertices or edges solutions, such as the minimum vertex cover problem, graph coloring problem and so on. In this paper, we present a DNA algorithm for solving the MMP with DNA molecular operations. For an undirected graph with n vertices and m edges, we reasonably design fixed length DNA strands representing vertices and edges of the graph, take appropriate steps and get the solutions of the MMP in proper length range using O(n^3) time. We extend the application of DNA molecular operations and simultaneously simplify the complexity of the computation.