利用动态差示扫描量热(DSC)实验初步研究了硝基胍的热分解特性,采用Kissinger和Ozawa法计算了其热分解活化能。运用中断回归实验研究了热履历对硝基胍热分解安全性的影响,并用等温DSC实验进行了验证。利用绝热量热仪(ARC)研究了硝基胍...利用动态差示扫描量热(DSC)实验初步研究了硝基胍的热分解特性,采用Kissinger和Ozawa法计算了其热分解活化能。运用中断回归实验研究了热履历对硝基胍热分解安全性的影响,并用等温DSC实验进行了验证。利用绝热量热仪(ARC)研究了硝基胍的绝热安全性,得到了其初始分解温度,温升速率。结果表明,硝基胍是熔融分解型含能材料,其热分解为自催化反应。热履历显著影响了硝基胍的热分解安全性,降低了其起始分解温度和峰温,使其在固态时就达到较高的热分解速率。在动态DSC实验中,其起始反应温度213.8~249.9℃,峰温215.0~255.2℃,表观活化能为111.6 k J·mol^(-1)和114.2 k J·mol^(-1)。在绝热实验中,其起始反应温度为170.6℃,最大温升速率为1.414℃·min^(-1)。展开更多
Photochemical reactions of 4-nitroquinoline 1-oxide(4NQO) with methionine-containing dipeptides Met-Met, Ala-Met, Met-Lue and Met-Gly have been studies by using 248 nm laser flash photolysis. The formation of α-alkyl...Photochemical reactions of 4-nitroquinoline 1-oxide(4NQO) with methionine-containing dipeptides Met-Met, Ala-Met, Met-Lue and Met-Gly have been studies by using 248 nm laser flash photolysis. The formation of α-alkyl radicals was observed, and their rate constants of formation were obtained. The reaction mechanism that the α-alkyl radicals produced via an electron transfer process between triplet 4NQO and methionine-containing dipeptide was proposed.展开更多
文摘利用动态差示扫描量热(DSC)实验初步研究了硝基胍的热分解特性,采用Kissinger和Ozawa法计算了其热分解活化能。运用中断回归实验研究了热履历对硝基胍热分解安全性的影响,并用等温DSC实验进行了验证。利用绝热量热仪(ARC)研究了硝基胍的绝热安全性,得到了其初始分解温度,温升速率。结果表明,硝基胍是熔融分解型含能材料,其热分解为自催化反应。热履历显著影响了硝基胍的热分解安全性,降低了其起始分解温度和峰温,使其在固态时就达到较高的热分解速率。在动态DSC实验中,其起始反应温度213.8~249.9℃,峰温215.0~255.2℃,表观活化能为111.6 k J·mol^(-1)和114.2 k J·mol^(-1)。在绝热实验中,其起始反应温度为170.6℃,最大温升速率为1.414℃·min^(-1)。
文摘Photochemical reactions of 4-nitroquinoline 1-oxide(4NQO) with methionine-containing dipeptides Met-Met, Ala-Met, Met-Lue and Met-Gly have been studies by using 248 nm laser flash photolysis. The formation of α-alkyl radicals was observed, and their rate constants of formation were obtained. The reaction mechanism that the α-alkyl radicals produced via an electron transfer process between triplet 4NQO and methionine-containing dipeptide was proposed.