利用负超可加相依(NSD)随机阵列的Rosenthal型矩不等式和截尾方法,在随机阵列{X nk,1≤k≤k n,n≥1}关于{a nk,1≤k≤k n,n≥1}一致可积的条件下,讨论NSD随机阵列加权和最大值max 1≤j≤k n∑j k=1 a nk X nk-E∑j k=1 a nk X nk的弱收...利用负超可加相依(NSD)随机阵列的Rosenthal型矩不等式和截尾方法,在随机阵列{X nk,1≤k≤k n,n≥1}关于{a nk,1≤k≤k n,n≥1}一致可积的条件下,讨论NSD随机阵列加权和最大值max 1≤j≤k n∑j k=1 a nk X nk-E∑j k=1 a nk X nk的弱收敛、L r收敛和完全收敛性.展开更多
文摘利用负超可加相依(NSD)随机阵列的Rosenthal型矩不等式和截尾方法,在随机阵列{X nk,1≤k≤k n,n≥1}关于{a nk,1≤k≤k n,n≥1}一致可积的条件下,讨论NSD随机阵列加权和最大值max 1≤j≤k n∑j k=1 a nk X nk-E∑j k=1 a nk X nk的弱收敛、L r收敛和完全收敛性.