Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location...In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.展开更多
In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computatio...In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computational Fluid Dynamics(CFD).Moreover,a Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is applied to optimize the related parameters,namely,the engine methanol ratio,the fuel injection time,the initial temperature,the Exhaust Gas Re-Circulation(EGR)rate,and the initial pressure.The so-called Conventional Diesel Combustion(CDC),Homogeneous Charge Compression Ignition(HCCI)and the Reactivity Controlled Compression Ignition(RCCI)combustion modes are compared.The results show that RCCI has a higher methanol ratio and an earlier injection timing with moderate EGR rate and higher initial pressure.The initial temperature increases as the methanol ratio increases.In comparison,CDC has the lowest hydrocarbon and CO emissions and the highest combustion efficiency.At different crankshaft rotation angles corresponding to 50%of the combustion amount(CA50),the combustion temperature and boundary layer temperature of HCCI change significantly,while those of RCCI undergo limited variations.At the same CA50,the exergy losses of HCCI and RCCI are lower than that of the CDC.On the basis of these findings,it can be concluded that the methanol/diesel RCCI engine can be used to obtain a clean and efficient combustion process,which should be regarded as a promising combustion mode.展开更多
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
基金Natural Science Foundation of Shanghai,China(No.15ZR1401600)the Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-D-2015096)
文摘In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.
文摘In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computational Fluid Dynamics(CFD).Moreover,a Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is applied to optimize the related parameters,namely,the engine methanol ratio,the fuel injection time,the initial temperature,the Exhaust Gas Re-Circulation(EGR)rate,and the initial pressure.The so-called Conventional Diesel Combustion(CDC),Homogeneous Charge Compression Ignition(HCCI)and the Reactivity Controlled Compression Ignition(RCCI)combustion modes are compared.The results show that RCCI has a higher methanol ratio and an earlier injection timing with moderate EGR rate and higher initial pressure.The initial temperature increases as the methanol ratio increases.In comparison,CDC has the lowest hydrocarbon and CO emissions and the highest combustion efficiency.At different crankshaft rotation angles corresponding to 50%of the combustion amount(CA50),the combustion temperature and boundary layer temperature of HCCI change significantly,while those of RCCI undergo limited variations.At the same CA50,the exergy losses of HCCI and RCCI are lower than that of the CDC.On the basis of these findings,it can be concluded that the methanol/diesel RCCI engine can be used to obtain a clean and efficient combustion process,which should be regarded as a promising combustion mode.