In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computatio...In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computational Fluid Dynamics(CFD).Moreover,a Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is applied to optimize the related parameters,namely,the engine methanol ratio,the fuel injection time,the initial temperature,the Exhaust Gas Re-Circulation(EGR)rate,and the initial pressure.The so-called Conventional Diesel Combustion(CDC),Homogeneous Charge Compression Ignition(HCCI)and the Reactivity Controlled Compression Ignition(RCCI)combustion modes are compared.The results show that RCCI has a higher methanol ratio and an earlier injection timing with moderate EGR rate and higher initial pressure.The initial temperature increases as the methanol ratio increases.In comparison,CDC has the lowest hydrocarbon and CO emissions and the highest combustion efficiency.At different crankshaft rotation angles corresponding to 50%of the combustion amount(CA50),the combustion temperature and boundary layer temperature of HCCI change significantly,while those of RCCI undergo limited variations.At the same CA50,the exergy losses of HCCI and RCCI are lower than that of the CDC.On the basis of these findings,it can be concluded that the methanol/diesel RCCI engine can be used to obtain a clean and efficient combustion process,which should be regarded as a promising combustion mode.展开更多
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location...In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.展开更多
Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very diff...Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very difficult to determine optimal parameters for improving cutting performance.Metal removal rate and surface roughness are the most important output parameters,which decide the cutting performance.There is no single optimal combination of cutting parameters,as their influences on the metal removal rate and the surface roughness are quite opposite.A multiple regression model was used to represent relationship between input and output variables and a multi-objective optimization method based on a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) was used to optimize ECM process.A non-dominated solution set was obtained.展开更多
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve...To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.展开更多
Extractive distillation(ED)and solvent-assisted pressure-swing distillation(SA-PSD)are both special distillation processes that perform good at separating pressure-insensitive azeotropes.However,few reported studies h...Extractive distillation(ED)and solvent-assisted pressure-swing distillation(SA-PSD)are both special distillation processes that perform good at separating pressure-insensitive azeotropes.However,few reported studies have compared the performance of the two processes.In this paper,ED processes with N-methylpyrrolidone(NMP)and dimethlac-etamide(DMCA)as entrainer,SA-PSD process with isopropyl-alcohol(IPA)as solvent and SA-PSD process with partial heat integration(PHI-PSD)are proposed to achieve high purity separation of a mixture of cyclohexane/2-butanol system.The optimal operating conditions of the processes are obtained after optimizing with NSGA-Ⅱ algorithm when total annual cost(TAC)and the entropy production of process are set as objectives.The optimal results show that the optimal PHI-PSD process has lower TAC by 28.7% and the lower entropy production by 39.5% than the optimal SA-PSD process while the ED process with NMP as entrainer has lower TAC by 50.9% and the lower entropy production by 56.1% than the optimal SA-PSD process.The optimal results show that the ED process with NMP as entrainer has the best economic and thermodynamic efficiency among the four proposed processes in this paper.展开更多
Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed...Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.展开更多
In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in inte...In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in intelligent manufacturing job shop environment was studied. The dual-resource integrated scheduling model of AGV and machine was established by comprehensively considering constraints of machines, workpieces and AGVs. The bidirectional single path fixed guidance system based on topological map was determined, and the AGV transportation task model was defined. The improved A* path optimization algorithm was used to determine the optimal path, and the path conflict elimination mechanism was described. The improved NSGA-Ⅱ algorithm was used to determine the machining workpiece sequence, and the competition mechanism was introduced to allocate AGV transportation tasks. The proposed model and method were verified by a workshop production example, the results showed that the dual resource integrated scheduling strategy of AGV and machine is effective.展开更多
In order to improve the robot' s abilities of bearing heavy burdens and transporting in complex terrains, the multi-objective optimization design for leg mechanism of the quadruped robot with hydraulic actuated is st...In order to improve the robot' s abilities of bearing heavy burdens and transporting in complex terrains, the multi-objective optimization design for leg mechanism of the quadruped robot with hydraulic actuated is studied in this paper. The kinematics and dynamics of the robot are ana- lyzed and the two-dimensional linear inverted pendulum model is adopted in planning the trajectories of joints. Then the mathematical model of valve-controlled asymmetric cylinder and control model of single leg are proposed respectively. In the end, NSGA-Ⅱ algorithm is used to achieve the multi^ob- jective optimization design of parameters concerning single leg mechanism and PD torque control. The results prove that the optimized leg mechanism can significantly reduce the required maximum power of hydraulic system, thus decrease its own weight and lead to the obtaining of good dynamic performance.展开更多
In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relo...In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relocation operations, and the total time used by these jockeys. For this sake, we propose to apply two algorithms namely NSGA-Ⅱ and an adapted memetic algorithm(MA) that we call MARPOCS which stands for memetic algorithm for the one-way carsharing system. The NSGA-Ⅱ is used as a reference to compare the performance of MARPOCS. The comparison of the approximation sets obtained by both algorithms shows that the hybrid algorithm outperforms the classical NSGA-Ⅱ and so solutions generated by the MARPOCS are much better than the solutions generated by NSGA-Ⅱ. This observation is proved by the comparison of different quality indicators’ values that are used to compare the performance of each algorithm. Results show that the MARPOCS is promising to generate very good solutions for the multiobjective car relocation problem in one-way carsharing system. It shows a good performance in exploring the search space and in finding solution with very good fitness values.展开更多
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating...Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model.展开更多
The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal plan...The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal planning,especially the siting and sizing of FCSs in the electrical distribution system.Inappropriate planning of fast EV charging stations(EVCSs)cause a negative impact on the distribution system.This paper presented a multiobjective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations(DGs)with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system.The problem is formulated as a mixed integer non-linear problem(MINLP)to optimize the loss of EV user,network power loss(NPL),FCS development cost and improve the voltage profile of the electrical distribution system.Non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)is used for solving the MINLP.The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.展开更多
文摘In order to address typical problems due to the huge demand of oil for consumption in traditional internal combustion engines,a new more efficient combustion mode is proposed and studied in the framework of Computational Fluid Dynamics(CFD).Moreover,a Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is applied to optimize the related parameters,namely,the engine methanol ratio,the fuel injection time,the initial temperature,the Exhaust Gas Re-Circulation(EGR)rate,and the initial pressure.The so-called Conventional Diesel Combustion(CDC),Homogeneous Charge Compression Ignition(HCCI)and the Reactivity Controlled Compression Ignition(RCCI)combustion modes are compared.The results show that RCCI has a higher methanol ratio and an earlier injection timing with moderate EGR rate and higher initial pressure.The initial temperature increases as the methanol ratio increases.In comparison,CDC has the lowest hydrocarbon and CO emissions and the highest combustion efficiency.At different crankshaft rotation angles corresponding to 50%of the combustion amount(CA50),the combustion temperature and boundary layer temperature of HCCI change significantly,while those of RCCI undergo limited variations.At the same CA50,the exergy losses of HCCI and RCCI are lower than that of the CDC.On the basis of these findings,it can be concluded that the methanol/diesel RCCI engine can be used to obtain a clean and efficient combustion process,which should be regarded as a promising combustion mode.
基金Natural Science Foundation of Shanghai,China(No.15ZR1401600)the Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-D-2015096)
文摘In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.
文摘Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very difficult to determine optimal parameters for improving cutting performance.Metal removal rate and surface roughness are the most important output parameters,which decide the cutting performance.There is no single optimal combination of cutting parameters,as their influences on the metal removal rate and the surface roughness are quite opposite.A multiple regression model was used to represent relationship between input and output variables and a multi-objective optimization method based on a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) was used to optimize ECM process.A non-dominated solution set was obtained.
基金Supported by the National"Thirteenth Five-year Plan"National Key Program(2016YFD0701301)the Heilongjiang Provincial Achievement Transformation Fund Project(NB08B-011)。
文摘To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.
基金supported by the National Natural Science Foundation of China(22178030,21878025,22078026)。
文摘Extractive distillation(ED)and solvent-assisted pressure-swing distillation(SA-PSD)are both special distillation processes that perform good at separating pressure-insensitive azeotropes.However,few reported studies have compared the performance of the two processes.In this paper,ED processes with N-methylpyrrolidone(NMP)and dimethlac-etamide(DMCA)as entrainer,SA-PSD process with isopropyl-alcohol(IPA)as solvent and SA-PSD process with partial heat integration(PHI-PSD)are proposed to achieve high purity separation of a mixture of cyclohexane/2-butanol system.The optimal operating conditions of the processes are obtained after optimizing with NSGA-Ⅱ algorithm when total annual cost(TAC)and the entropy production of process are set as objectives.The optimal results show that the optimal PHI-PSD process has lower TAC by 28.7% and the lower entropy production by 39.5% than the optimal SA-PSD process while the ED process with NMP as entrainer has lower TAC by 50.9% and the lower entropy production by 56.1% than the optimal SA-PSD process.The optimal results show that the ED process with NMP as entrainer has the best economic and thermodynamic efficiency among the four proposed processes in this paper.
基金Project(3502Z20179026)supported by Xiamen Science and Technology Project,China。
文摘Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.
基金Project(BK20201162)supported by the General Program of Natural Science Foundation of Jiangsu Province,ChinaProject(JC2019126)supported by the Science and Technology Plan Fundamental Scientific Research Funding Project of Nantong,China+1 种基金Project(CE20205045)supported by the Changzhou Science and Technology Support Plan(Social Development),ChinaProject(51875171)supported by the National Nature Science Foundation of China。
文摘In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in intelligent manufacturing job shop environment was studied. The dual-resource integrated scheduling model of AGV and machine was established by comprehensively considering constraints of machines, workpieces and AGVs. The bidirectional single path fixed guidance system based on topological map was determined, and the AGV transportation task model was defined. The improved A* path optimization algorithm was used to determine the optimal path, and the path conflict elimination mechanism was described. The improved NSGA-Ⅱ algorithm was used to determine the machining workpiece sequence, and the competition mechanism was introduced to allocate AGV transportation tasks. The proposed model and method were verified by a workshop production example, the results showed that the dual resource integrated scheduling strategy of AGV and machine is effective.
基金Supported by Defense Industrial Technology Development Program (B2220110013)State Key Laboratory of Explosion Science and Technology Foundation(QNKT10-03)
文摘In order to improve the robot' s abilities of bearing heavy burdens and transporting in complex terrains, the multi-objective optimization design for leg mechanism of the quadruped robot with hydraulic actuated is studied in this paper. The kinematics and dynamics of the robot are ana- lyzed and the two-dimensional linear inverted pendulum model is adopted in planning the trajectories of joints. Then the mathematical model of valve-controlled asymmetric cylinder and control model of single leg are proposed respectively. In the end, NSGA-Ⅱ algorithm is used to achieve the multi^ob- jective optimization design of parameters concerning single leg mechanism and PD torque control. The results prove that the optimized leg mechanism can significantly reduce the required maximum power of hydraulic system, thus decrease its own weight and lead to the obtaining of good dynamic performance.
文摘In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relocation operations, and the total time used by these jockeys. For this sake, we propose to apply two algorithms namely NSGA-Ⅱ and an adapted memetic algorithm(MA) that we call MARPOCS which stands for memetic algorithm for the one-way carsharing system. The NSGA-Ⅱ is used as a reference to compare the performance of MARPOCS. The comparison of the approximation sets obtained by both algorithms shows that the hybrid algorithm outperforms the classical NSGA-Ⅱ and so solutions generated by the MARPOCS are much better than the solutions generated by NSGA-Ⅱ. This observation is proved by the comparison of different quality indicators’ values that are used to compare the performance of each algorithm. Results show that the MARPOCS is promising to generate very good solutions for the multiobjective car relocation problem in one-way carsharing system. It shows a good performance in exploring the search space and in finding solution with very good fitness values.
文摘Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model.
文摘The large-scale construction of fast charging stations(FCSs)for electric vehicles(EVs)is helpful inpromoting the EV.It creates a significant challenge for the distribution system operator to determine the optimal planning,especially the siting and sizing of FCSs in the electrical distribution system.Inappropriate planning of fast EV charging stations(EVCSs)cause a negative impact on the distribution system.This paper presented a multiobjective optimization problem to obtain the simultaneous placement and sizing of FCSs and distributed generations(DGs)with the constraints such as the number of EVs in all zones and possible number of FCSs based on the road and electrical network in the proposed system.The problem is formulated as a mixed integer non-linear problem(MINLP)to optimize the loss of EV user,network power loss(NPL),FCS development cost and improve the voltage profile of the electrical distribution system.Non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)is used for solving the MINLP.The performance of the proposed technique is evaluated by the 118-bus electrical distribution system.