Corrosion of metal components constitutes a major challenge in many engineering systems, with appropriate design, proper material selection, and heat treatment as commonly used control strategies. In this study, the c...Corrosion of metal components constitutes a major challenge in many engineering systems, with appropriate design, proper material selection, and heat treatment as commonly used control strategies. In this study, the corrosion behaviour of heat-treated (annealed, normalised, hardened, and tempered) NST 37-2 steel in three concentrations (1.0, 1.5 and 2.0 M) of hydrochloric acid solution was investigated using weight loss and electrode-potential methods. Results showed that corrosion rate increased with increase in acid concentration. The decreasing order of corrosion resistance was Tempered > Annealed > Normalised > Hardened > Untreated. The surface pictures of the heat-treated and untreated samples showed uniform and pitting corrosion with the latter becoming more pronounced as concentration increased.展开更多
Engineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. In this study, the eff...Engineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. In this study, the effect of heat treatment (annealing, normalising, hardening, and tempering) on the microstructure and some selected mechanical properties of NST 37-2 steel were studied. Sample of steel was purchased from local market and the spectrometry analysis was carried out. The steel samples were heat treated in an electric furnace at different temperature levels and holding times;and then cooled in different media. The mechanical properties (tensile yield strength, ultimate tensile strength, Young’s modulus, percentage reduction, percentage elongation, toughness and hardness) of the treated and untreated samples were determined using standard methods and the microstructure of the samples was examined using metallographic microscope equipped with camera. Results showed that the mechanical properties of NST 37-2 steel can be changed and improved by various heat treatments for a particular application. It was also found that the annealed samples with mainly ferrite structure gave the lowest tensile strength and hardness value and highest ductility and toughness value while hardened sample which comprise martensite gave the highest tensile strength and hardness value and lowest ductility and toughness value.展开更多
文摘Corrosion of metal components constitutes a major challenge in many engineering systems, with appropriate design, proper material selection, and heat treatment as commonly used control strategies. In this study, the corrosion behaviour of heat-treated (annealed, normalised, hardened, and tempered) NST 37-2 steel in three concentrations (1.0, 1.5 and 2.0 M) of hydrochloric acid solution was investigated using weight loss and electrode-potential methods. Results showed that corrosion rate increased with increase in acid concentration. The decreasing order of corrosion resistance was Tempered > Annealed > Normalised > Hardened > Untreated. The surface pictures of the heat-treated and untreated samples showed uniform and pitting corrosion with the latter becoming more pronounced as concentration increased.
文摘Engineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. In this study, the effect of heat treatment (annealing, normalising, hardening, and tempering) on the microstructure and some selected mechanical properties of NST 37-2 steel were studied. Sample of steel was purchased from local market and the spectrometry analysis was carried out. The steel samples were heat treated in an electric furnace at different temperature levels and holding times;and then cooled in different media. The mechanical properties (tensile yield strength, ultimate tensile strength, Young’s modulus, percentage reduction, percentage elongation, toughness and hardness) of the treated and untreated samples were determined using standard methods and the microstructure of the samples was examined using metallographic microscope equipped with camera. Results showed that the mechanical properties of NST 37-2 steel can be changed and improved by various heat treatments for a particular application. It was also found that the annealed samples with mainly ferrite structure gave the lowest tensile strength and hardness value and highest ductility and toughness value while hardened sample which comprise martensite gave the highest tensile strength and hardness value and lowest ductility and toughness value.