The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag...The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag powders over the temperature range from 393 to 453 K. The electrical resistance measurements of the nanostructured Ag bulk samples obtained by compacting the Ag powders after heat treatments showed a change in the sign of a with dP and dc. When dp and dc are smaller or equal to 18 and 11 nm below room temperature or 20 and 12 nm above room temperature, respectively, the sign of the temperature coefficient of resistivity changes from positive to negative. The negative a arises mainly from the high resistivity induced by the particle interfaces with very lowly ordered or even disordered structure, a large volume fraction of interfaces and impurities existing in the interfaces, and the quantum size effect appearing in the nano-Ag grains.展开更多
Negative temperature coefficient(NTC)thermistor plays a crucial role in science research and engineering applications for precise temperature monitoring.Although great progress has been achieved in NTC materials,enhan...Negative temperature coefficient(NTC)thermistor plays a crucial role in science research and engineering applications for precise temperature monitoring.Although great progress has been achieved in NTC materials,enhancing sensitivity and maintaining this high sensitivity along with linearity across extensive temperature ranges remain a significant challenge.In this study,we introduce a diamondbased thermistor(DT)characterized by its outstanding sensitivity,swift response time,and broad temperature monitoring capabilities.The temperature constant B for this DT,measured from 30 to 300°C(B30/300),achieves an exceptional value of 8012 K,which notably exceeds the temperature sensing capabilities of previously reported NTC thermistors within this extensive range.Moreover,diamond’s unique thermal conductivity and stability significantly boost the response speed and durability of the DT,offering substantial advantages over traditional ceramic thermistors.The enhanced temperature-sensitive properties of the DT are attributed to the presence of impurity elements in polycrystalline diamond.Impedance analysis indicates a hopping conduction mechanism,likely involving C-H or C-N dipoles at the diamond grain boundaries.This study marks a significant leap forward in diamond thermistor technology and sheds light on the mechanisms of thermal active conduction in diamond materials.展开更多
The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering...The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering.Novel high-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Ho_(0.2)Yb_(0.2))CrO_(3)(HE-RECrO_(3))nanofibers were prepared by electro spinning.This work demonstrates that HE-RECrO_(3)nanofibe rs were successfully synthesized at a low temperature(800℃),which is approximately 400℃lower than the temperatures at which chromate ceramics were synthesized via the sol-gel method and the solid-state reaction method.The resistivity of HE-RECrO_(3)nanofibers decreases exponentially with increasing temperature from 25 to600℃.The logarithm of the resistivity is linearly related to the inverse of the temperature,confirming the negative temperature coefficient property of HE-RECrO_(3)nanofibers.The B_(25/50)value of the HERECrO_(3)nanofibers reaches 4072 K.In conclusion,HE-RECrO_(3)nanofibers are expected to be potential candidates for negative-temperature-coefficient(NTC)thermistors.展开更多
Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT...Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT) component can remarkably increase the onset temperature T c of PTCR ceramics with the expense of the resistivity R 25 increase. CaTiO 3 (9–27 mol%) component can decrease the resistivity, and adjust the effects of BNT phase on the T c point. For the sample containing 3 mol% CaTiO 3 , T c raises from 122 ℃ to 153 ℃ when only 0.6 mol% BNT added, while for the ones with higher CaTiO 3 content (9–27 mol%), T c is only increased by a rate of 8–9℃/1.0 mol% BNT. The effects of BNT and CaTiO 3 components on R25/Rmin (negative temperature coefficient effect) are also discussed.展开更多
负温度系数(negative temperature coefficient,NTC)热敏电阻器由于在窄温区内具有极高的灵敏度,在海洋领域中有着广泛的应用,但深海应用中固有的高静水压力,对器件的测温准确度造成不利影响。为了更好地认识这种现象,以珠状NTC热敏电...负温度系数(negative temperature coefficient,NTC)热敏电阻器由于在窄温区内具有极高的灵敏度,在海洋领域中有着广泛的应用,但深海应用中固有的高静水压力,对器件的测温准确度造成不利影响。为了更好地认识这种现象,以珠状NTC热敏电阻器为研究对象,利用海洋环境高压模拟装置,开展了静水压力作用对器件电学特性影响的研究,固定环境温度25℃和0℃,压力范围0~60 MPa,步长5 MPa。结果显示,随着静水压力的增大,NTC热敏电阻器的电阻值减小;环境温度25℃和0℃时,5~60 MPa的静水压力造成的漂移分别为-0.11%~-2.81%、-0.19%~-2.78%,等效于温度漂移分别为0.024~0.624℃、0.036~0.535℃。这为热敏电阻器在深海温度准确测量的提升提供了指引,有利于在海洋测温领域中更好的应用。展开更多
Conductive polyvinylidene fluoride(PVDF)matrix composites filled with graphited fiber(GF)or carbon fiber(CF)were prepared by the melt-mixing method.The breakage and length distribution of the fibers in the polym...Conductive polyvinylidene fluoride(PVDF)matrix composites filled with graphited fiber(GF)or carbon fiber(CF)were prepared by the melt-mixing method.The breakage and length distribution of the fibers in the polymer matrix were studied by scanning electron microscope(SEM)and optical microscope(OM)observations,respectively. The differences in the positive temperature coefficient(PTC)effects of the composites were mainly attributed to inter-fiber contact ability.The elimination of the negative temperature coefficient(NTC)effect for CF/PVDF composite was because of an increase in the viscosity of the polymer matrix.With the same filler content,CF could be more effective,to eliminate the NTC effect when compared with GF.Addition of 2%CF(mass fraction)in the PVDF composite with 7%GF(mass fraction)could effectively eliminate the NTC phenomenon of the composite.展开更多
High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the ...High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the second component, ethylene-vinyl acetate(EVA) and ethylene propylene rubber(EPR) as the third component, azobisformamide(AC) as foamer, and dicumyl peroxide(DCP) as cross-linker. The structure and resistivity-temperature behavior of high-density polyethylene(HDPE)/CB foaming conductive composites were investigated. Influences of carbon black, LDPE, EVA, EPR, AC, and DCP on the foaming performance and resistivity-temperature behavior of HDPE/CB foaming conductive composites were also studied. The results reveal that HDPE/CB foaming conductive composite exhibits better switching characteristic; ACET-filled HDPE foaming conductive composite displays better positive temperature coefficient(PYC) effect; whereas super conductive carbon black(HG-1P)-filled HDPE foaming conductive composite shows better negative temperature coefficient(NTC) effect.展开更多
We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identify...We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.展开更多
Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperat...Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperature coefficient (NTC) effect above room temperature, and can be adjusted by varying the content filler and the magnitude of magnetic field applied. Hill's quantum tunneling model was modified to understand the electrical conduction mechanism in the composites. It shows that the NTC effect ascribes to the dominant thermal activated tunneling transport of electron across adjacent nanoparticles, as well as the low thermal expansivity of epoxy resin matrix.展开更多
基金the National Natural Science FOundation of China under grant! No.19974041the National Major Fundamental ResearCh Program-Nal
文摘The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag powders over the temperature range from 393 to 453 K. The electrical resistance measurements of the nanostructured Ag bulk samples obtained by compacting the Ag powders after heat treatments showed a change in the sign of a with dP and dc. When dp and dc are smaller or equal to 18 and 11 nm below room temperature or 20 and 12 nm above room temperature, respectively, the sign of the temperature coefficient of resistivity changes from positive to negative. The negative a arises mainly from the high resistivity induced by the particle interfaces with very lowly ordered or even disordered structure, a large volume fraction of interfaces and impurities existing in the interfaces, and the quantum size effect appearing in the nano-Ag grains.
基金supported by the Fundamental Research Funds for the Central Universities(CUG2106117)Hubei Jewelry Engineering Technology Research Center(CIGTXM03202301)+1 种基金Hubei Provincial Natural Science Foundation(20241350053)GuangDong Basic and Applied Basic Research Foundation(2023A1515110043).
文摘Negative temperature coefficient(NTC)thermistor plays a crucial role in science research and engineering applications for precise temperature monitoring.Although great progress has been achieved in NTC materials,enhancing sensitivity and maintaining this high sensitivity along with linearity across extensive temperature ranges remain a significant challenge.In this study,we introduce a diamondbased thermistor(DT)characterized by its outstanding sensitivity,swift response time,and broad temperature monitoring capabilities.The temperature constant B for this DT,measured from 30 to 300°C(B30/300),achieves an exceptional value of 8012 K,which notably exceeds the temperature sensing capabilities of previously reported NTC thermistors within this extensive range.Moreover,diamond’s unique thermal conductivity and stability significantly boost the response speed and durability of the DT,offering substantial advantages over traditional ceramic thermistors.The enhanced temperature-sensitive properties of the DT are attributed to the presence of impurity elements in polycrystalline diamond.Impedance analysis indicates a hopping conduction mechanism,likely involving C-H or C-N dipoles at the diamond grain boundaries.This study marks a significant leap forward in diamond thermistor technology and sheds light on the mechanisms of thermal active conduction in diamond materials.
基金Project supported by the National Key Research and Development Program of China(2019YFC0605000)the"Transformational Technologies for Clean Energy and Demonstration",Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21000000)+4 种基金the Independent Deployment Project of Ganjiang Innovation Research Institute of Chinese Academy of Sciences(E055A002)the Independent Deployment Project of China Fujian Innovation Laboratory of Optoelectronic Information Technology(2021ZZ109)the Fujian Provincial Natural Fund(2021J05101)the National Natural Science Foundation of China(21771196,62275276)Advanced Energy Science and Technology Guangdong Laboratory(HND20TDGFDC00)。
文摘The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering.Novel high-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Ho_(0.2)Yb_(0.2))CrO_(3)(HE-RECrO_(3))nanofibers were prepared by electro spinning.This work demonstrates that HE-RECrO_(3)nanofibe rs were successfully synthesized at a low temperature(800℃),which is approximately 400℃lower than the temperatures at which chromate ceramics were synthesized via the sol-gel method and the solid-state reaction method.The resistivity of HE-RECrO_(3)nanofibers decreases exponentially with increasing temperature from 25 to600℃.The logarithm of the resistivity is linearly related to the inverse of the temperature,confirming the negative temperature coefficient property of HE-RECrO_(3)nanofibers.The B_(25/50)value of the HERECrO_(3)nanofibers reaches 4072 K.In conclusion,HE-RECrO_(3)nanofibers are expected to be potential candidates for negative-temperature-coefficient(NTC)thermistors.
基金Project supported by the SPAT of Shanghai Committee of Chinese People's Political Consultative Conference and Shanghai Education Development Foundation (Grant No.2008012)
文摘Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT) component can remarkably increase the onset temperature T c of PTCR ceramics with the expense of the resistivity R 25 increase. CaTiO 3 (9–27 mol%) component can decrease the resistivity, and adjust the effects of BNT phase on the T c point. For the sample containing 3 mol% CaTiO 3 , T c raises from 122 ℃ to 153 ℃ when only 0.6 mol% BNT added, while for the ones with higher CaTiO 3 content (9–27 mol%), T c is only increased by a rate of 8–9℃/1.0 mol% BNT. The effects of BNT and CaTiO 3 components on R25/Rmin (negative temperature coefficient effect) are also discussed.
基金the National Natural Science Foundation of China(Nos.20771030 and 20671025).
文摘Conductive polyvinylidene fluoride(PVDF)matrix composites filled with graphited fiber(GF)or carbon fiber(CF)were prepared by the melt-mixing method.The breakage and length distribution of the fibers in the polymer matrix were studied by scanning electron microscope(SEM)and optical microscope(OM)observations,respectively. The differences in the positive temperature coefficient(PTC)effects of the composites were mainly attributed to inter-fiber contact ability.The elimination of the negative temperature coefficient(NTC)effect for CF/PVDF composite was because of an increase in the viscosity of the polymer matrix.With the same filler content,CF could be more effective,to eliminate the NTC effect when compared with GF.Addition of 2%CF(mass fraction)in the PVDF composite with 7%GF(mass fraction)could effectively eliminate the NTC phenomenon of the composite.
文摘High-density polyethylene/carbon black foaming conductive composites were prepared from acetylene black(ACEY) and super conductive carbon black(HG-1P) as conductive filler, low-density polyethylene(LDPE) as the second component, ethylene-vinyl acetate(EVA) and ethylene propylene rubber(EPR) as the third component, azobisformamide(AC) as foamer, and dicumyl peroxide(DCP) as cross-linker. The structure and resistivity-temperature behavior of high-density polyethylene(HDPE)/CB foaming conductive composites were investigated. Influences of carbon black, LDPE, EVA, EPR, AC, and DCP on the foaming performance and resistivity-temperature behavior of HDPE/CB foaming conductive composites were also studied. The results reveal that HDPE/CB foaming conductive composite exhibits better switching characteristic; ACET-filled HDPE foaming conductive composite displays better positive temperature coefficient(PYC) effect; whereas super conductive carbon black(HG-1P)-filled HDPE foaming conductive composite shows better negative temperature coefficient(NTC) effect.
基金supported by the National Natural Science Foundation of China(No.91641205,No.51622605,No.91541201)the Shanghai Science and Technology Committee(No.17XD1402000)
文摘We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.
基金supported by the National Natural Sci-ence Foundation of China under grant No. 50704021.
文摘Epoxy resin/Ni@C nanoparticle composites with aligned microstructure were prepared by using a procedure of magnetic field assisted curing. The results show that the resistivity of composites exhibits negative temperature coefficient (NTC) effect above room temperature, and can be adjusted by varying the content filler and the magnitude of magnetic field applied. Hill's quantum tunneling model was modified to understand the electrical conduction mechanism in the composites. It shows that the NTC effect ascribes to the dominant thermal activated tunneling transport of electron across adjacent nanoparticles, as well as the low thermal expansivity of epoxy resin matrix.