This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with...This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.展开更多
In order to design the production with complex external shapes, a newmethod is put forward using non-uniform rational B-spline(NURBS)curves to unifythe description of complex curves composed of several segments with d...In order to design the production with complex external shapes, a newmethod is put forward using non-uniform rational B-spline(NURBS)curves to unifythe description of complex curves composed of several segments with different degrees,and then these complex curves are used to construct NURBS skinning surface. Somekinds of skills are used to dispose the knot of NURBS curves and surfaces for practicalproblems. Finally, the method is verified by several complex examples.展开更多
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an...The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.展开更多
Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved chann...Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.展开更多
We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface,together with a heat transfer analysis of the same problem....We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface,together with a heat transfer analysis of the same problem.The body force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate.Curvilinear coordinates are used to account for the considered curved geometry and a set of balance equations for mass,momentum,energy and concentration is obtained accordingly.These are turned into ordinary differential equations using a similarity transformation.We show that these equations have dual solutions for a number of different combinations of various parameters.The stability of such solutions is investigated by applying perturbations on the steady states.It is found that high values of the Micropolar and Casson parameters cause the flow to move more slowly.However,when compared to a shrunken surface,a stretched surface produces a greater Micro-rotation flux.展开更多
The covariant derivative is a generalization of differentiating vectors.The Euclidean derivative is a special case of the covariant derivative in Euclidean space.The covariant derivative gathers broad attention,partic...The covariant derivative is a generalization of differentiating vectors.The Euclidean derivative is a special case of the covariant derivative in Euclidean space.The covariant derivative gathers broad attention,particularly when computing vector derivatives on curved surfaces and volumes in various applications.Covariant derivatives have been computed using the metric tensor from the analytically known curved axes.However,deriving the global axis for the domain has been mathematically and computationally challenging for an arbitrary two-dimensional(2D)surface.Consequently,computing the covariant derivative has been difficult or even impossible.A novel high-order numerical scheme is proposed for computing the covariant derivative on any 2D curved surface.A set of orthonormal vectors,known as moving frames,expand vectors to compute accurately covariant derivatives on 2D curved surfaces.The proposed scheme does not require the construction of curved axes for the metric tensor or the Christoffel symbols.The connectivity given by the Christoffel symbols is equivalently provided by the attitude matrix of orthonormal moving frames.Consequently,the proposed scheme can be extended to the general 2D curved surface.As an application,the Helmholtz‐Hodge decomposition is considered for a realistic atrium and a bunny.展开更多
in the paper, first, using the transinfinite interpolation strategy rectangular free formsurfaces with C0 and C1 cross boundary continuity are respectively generated by three of its fourboundary curves and correspondi...in the paper, first, using the transinfinite interpolation strategy rectangular free formsurfaces with C0 and C1 cross boundary continuity are respectively generated by three of its fourboundary curves and corresponding cross derivatives. Then, their singularity is removed by anapproximation approach. Finally the surfaces are converted to the NURBS surfaces of degrees 5 × 6and 7×10 respectively. At the end of the paper, conclusions and examples are given.展开更多
Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surfac...Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surface will totally reflect the patterns when it is placed inside a dome-shaped light source, whose inner wall is modified by patterns with certain regular. Distortion or intermittence of reflected pattern will occur at the defective part, which indicates the pattern has lost its integrity. Based on the integrity analysis of reflected pattern images? surface defects can be revealed. In this paper, a set of concentric circles are used as the pattern and an image processing algorithm is customized to extract the surface defects. Results show that the proposed method is effective for the specular curved surface defect inspection展开更多
Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques c...Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques cannot always retrieve information on whole subsidence area.This study focuses on the reconstruction of a digital elevation model(DEM) with terrestrial laser scanning(TLS) point cloud data.Firstly,the methodology of the DEM with terrestrial 3-dimensional laser scanning is introduced.Then,a DEM modeling approach that involves the application of curved non-uniform rational B-splines(NURBS) surface is put forward.Finally,the performance of the DEM modeling approach with different surface inverse methods is demonstrated.The results indicate that the DEM based on the point cloud data and curved NURBS surface can achieve satisfactory accuracy.In addition,the performance of the hyperbolic paraboloid appears to be better than that of the elliptic paraboloid.The reconstructed DEM is continuous and can easily be integrated into other programs.Such features are of great importance in monitoring dynamic ground surface subsidence.展开更多
The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo-...The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.展开更多
To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate,...To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.展开更多
By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the ...By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.展开更多
We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic f...We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic field and effective spin–orbit interaction(SOI)arising from the curvature,as well as an effective scalar potential resulting from variations in thickness.Importantly,we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems,thus guaranteeing the robustness of spin interference measurements to thickness imperfection.Furthermore,we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios,which is crucial for its utilization in one-side etching systems.展开更多
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw...It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.展开更多
文摘This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.
文摘In order to design the production with complex external shapes, a newmethod is put forward using non-uniform rational B-spline(NURBS)curves to unifythe description of complex curves composed of several segments with different degrees,and then these complex curves are used to construct NURBS skinning surface. Somekinds of skills are used to dispose the knot of NURBS curves and surfaces for practicalproblems. Finally, the method is verified by several complex examples.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005078,U1908231,52075076).
文摘The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510701)the National Natural Science Foundation of China(Grant No.U20A20319).
文摘Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.
文摘We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface,together with a heat transfer analysis of the same problem.The body force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate.Curvilinear coordinates are used to account for the considered curved geometry and a set of balance equations for mass,momentum,energy and concentration is obtained accordingly.These are turned into ordinary differential equations using a similarity transformation.We show that these equations have dual solutions for a number of different combinations of various parameters.The stability of such solutions is investigated by applying perturbations on the steady states.It is found that high values of the Micropolar and Casson parameters cause the flow to move more slowly.However,when compared to a shrunken surface,a stretched surface produces a greater Micro-rotation flux.
基金the National Research Foundation of Korea(NRF-2021R1A2C109297811).
文摘The covariant derivative is a generalization of differentiating vectors.The Euclidean derivative is a special case of the covariant derivative in Euclidean space.The covariant derivative gathers broad attention,particularly when computing vector derivatives on curved surfaces and volumes in various applications.Covariant derivatives have been computed using the metric tensor from the analytically known curved axes.However,deriving the global axis for the domain has been mathematically and computationally challenging for an arbitrary two-dimensional(2D)surface.Consequently,computing the covariant derivative has been difficult or even impossible.A novel high-order numerical scheme is proposed for computing the covariant derivative on any 2D curved surface.A set of orthonormal vectors,known as moving frames,expand vectors to compute accurately covariant derivatives on 2D curved surfaces.The proposed scheme does not require the construction of curved axes for the metric tensor or the Christoffel symbols.The connectivity given by the Christoffel symbols is equivalently provided by the attitude matrix of orthonormal moving frames.Consequently,the proposed scheme can be extended to the general 2D curved surface.As an application,the Helmholtz‐Hodge decomposition is considered for a realistic atrium and a bunny.
文摘in the paper, first, using the transinfinite interpolation strategy rectangular free formsurfaces with C0 and C1 cross boundary continuity are respectively generated by three of its fourboundary curves and corresponding cross derivatives. Then, their singularity is removed by anapproximation approach. Finally the surfaces are converted to the NURBS surfaces of degrees 5 × 6and 7×10 respectively. At the end of the paper, conclusions and examples are given.
基金Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCYBJC18600,No.14JCZDJC39700)National Key Scientific Instrument and Equipment Development Project(No.2013YQ17053903)
文摘Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surface will totally reflect the patterns when it is placed inside a dome-shaped light source, whose inner wall is modified by patterns with certain regular. Distortion or intermittence of reflected pattern will occur at the defective part, which indicates the pattern has lost its integrity. Based on the integrity analysis of reflected pattern images? surface defects can be revealed. In this paper, a set of concentric circles are used as the pattern and an image processing algorithm is customized to extract the surface defects. Results show that the proposed method is effective for the specular curved surface defect inspection
基金Project(51174206)supported by the National Natural Science Foundation of ChinaProject(2014ZDPY29)supported by the Fundamental Research Funds for the Central UniversitiesProject(SZBF 2011-6-B35)supported by the Priority Academic Program Development of Higher Education Institutions(PAPD)of Jiangsu Province,China
文摘Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques cannot always retrieve information on whole subsidence area.This study focuses on the reconstruction of a digital elevation model(DEM) with terrestrial laser scanning(TLS) point cloud data.Firstly,the methodology of the DEM with terrestrial 3-dimensional laser scanning is introduced.Then,a DEM modeling approach that involves the application of curved non-uniform rational B-splines(NURBS) surface is put forward.Finally,the performance of the DEM modeling approach with different surface inverse methods is demonstrated.The results indicate that the DEM based on the point cloud data and curved NURBS surface can achieve satisfactory accuracy.In addition,the performance of the hyperbolic paraboloid appears to be better than that of the elliptic paraboloid.The reconstructed DEM is continuous and can easily be integrated into other programs.Such features are of great importance in monitoring dynamic ground surface subsidence.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2003005)~~
文摘The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.
基金The Doctoral Fund of Ministry of Education of China(No.20090092110052)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJA460002)College Industrialization Project of Jiangsu Province(No.JHB2012-21)
文摘To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.
文摘By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.12104239)National Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210581)+2 种基金Nanjing University of Posts and Telecommunications Science Foundation(Grant Nos.NY221024 and NY221100)the Science and Technology Program of Guangxi,China(Grant No.2018AD19310)the Jiangxi Provincial Natural Science Foundation(Grant No.20224BAB211020).
文摘We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic field and effective spin–orbit interaction(SOI)arising from the curvature,as well as an effective scalar potential resulting from variations in thickness.Importantly,we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems,thus guaranteeing the robustness of spin interference measurements to thickness imperfection.Furthermore,we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios,which is crucial for its utilization in one-side etching systems.
基金the National Key Research and Development Program of China(2018YFA0703400)the Young Scientists Fund of the National Natural Science Foundation of China(52205447)Changjiang Scholars Program of the Chinese Ministry of Education。
文摘It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.