In the current study,the effect of flyash(FA)on the physic-mechanical,electrical,thermal and morphological behavior of nylon-66(PA)was inves-tigated.PA/FA composites were prepared by melt mixing via twin screw ex-trud...In the current study,the effect of flyash(FA)on the physic-mechanical,electrical,thermal and morphological behavior of nylon-66(PA)was inves-tigated.PA/FA composites were prepared by melt mixing via twin screw ex-truder,with varying weight percent(5 wt%,10 wt%,15 wt%and 20 wt%)of flyash.The results of composites were optimized and compared with vir-gin nylon-66.Mechanical and electrical properties of composites improved up to 10 wt%of FA loading without compromising the properties.The fly-ash filled nylon-66 composites showed a low abrasive wear rate.Increase the heat distortion temperature of composites with an increase in weight percent of flyash while opposing the melt flow rate.Flyash filler enhances the stiffness of plastics but significantly reduces the impact properties.Dis-persion of flyash was examined by impact fracture surface of composites using a scanning electron microscope.展开更多
以尼龙66(PA66)和植酸(IP6)为前驱体、乙酸为溶剂,采用溶剂热法制备了PA66基碳点(66CDs)。利用TEM、FTIR、XPS、荧光光谱对其进行了表征,对其光学性能、离子稳定性和时间稳定性进行了测试,探究了其指纹识别、荧光防伪、光线阻挡的应用...以尼龙66(PA66)和植酸(IP6)为前驱体、乙酸为溶剂,采用溶剂热法制备了PA66基碳点(66CDs)。利用TEM、FTIR、XPS、荧光光谱对其进行了表征,对其光学性能、离子稳定性和时间稳定性进行了测试,探究了其指纹识别、荧光防伪、光线阻挡的应用。结果表明,将1.6 g PA66、1.1 g IP6加入20 mL乙酸中,于260℃下反应36h,制备的66CDs具有最大荧光强度。66CDs为球形结构,平均粒径4.00nm,表面含有羧基、羟基、氨基等官能团;66CDs的荧光为非激发波长依赖型,最佳激发波长和发射波长分别为360和490 nm,荧光量子产率可达11.69%,其荧光强度不受常见金属阳离子影响,30 d内具有稳定性。由66CDs与水溶性淀粉制备的荧光粉末可用于指纹识别,不仅可将66CDs制成油墨用于荧光防伪,还可将其制成防蓝光膜,用于蓝光防护。展开更多
Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred ...Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.展开更多
文摘In the current study,the effect of flyash(FA)on the physic-mechanical,electrical,thermal and morphological behavior of nylon-66(PA)was inves-tigated.PA/FA composites were prepared by melt mixing via twin screw ex-truder,with varying weight percent(5 wt%,10 wt%,15 wt%and 20 wt%)of flyash.The results of composites were optimized and compared with vir-gin nylon-66.Mechanical and electrical properties of composites improved up to 10 wt%of FA loading without compromising the properties.The fly-ash filled nylon-66 composites showed a low abrasive wear rate.Increase the heat distortion temperature of composites with an increase in weight percent of flyash while opposing the melt flow rate.Flyash filler enhances the stiffness of plastics but significantly reduces the impact properties.Dis-persion of flyash was examined by impact fracture surface of composites using a scanning electron microscope.
文摘以尼龙66(PA66)和植酸(IP6)为前驱体、乙酸为溶剂,采用溶剂热法制备了PA66基碳点(66CDs)。利用TEM、FTIR、XPS、荧光光谱对其进行了表征,对其光学性能、离子稳定性和时间稳定性进行了测试,探究了其指纹识别、荧光防伪、光线阻挡的应用。结果表明,将1.6 g PA66、1.1 g IP6加入20 mL乙酸中,于260℃下反应36h,制备的66CDs具有最大荧光强度。66CDs为球形结构,平均粒径4.00nm,表面含有羧基、羟基、氨基等官能团;66CDs的荧光为非激发波长依赖型,最佳激发波长和发射波长分别为360和490 nm,荧光量子产率可达11.69%,其荧光强度不受常见金属阳离子影响,30 d内具有稳定性。由66CDs与水溶性淀粉制备的荧光粉末可用于指纹识别,不仅可将66CDs制成油墨用于荧光防伪,还可将其制成防蓝光膜,用于蓝光防护。
文摘Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.