This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LF...This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.展开更多
Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for a...Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.展开更多
DNDC, a rainfall-driven and process-oriented model of soil carbon and nitrogenbiogeochemistry, is applied t0 simulate the nitrous oxide emissions from agricultural ecosystem inSoutheast China. We simulated the soil N2...DNDC, a rainfall-driven and process-oriented model of soil carbon and nitrogenbiogeochemistry, is applied t0 simulate the nitrous oxide emissions from agricultural ecosystem inSoutheast China. We simulated the soil N2O emission during a whole rice-wheat rotation cycle(from Nov. 1, 1996 to Oct. 31, 1997) under three different conditions, which are A) no fertilizer, B)both chemical fertilizer and manure and, C) chemical fertiliser only. The processes ofN2O emission were discussed in detail by comparing the model outputs with the results from fieldmeasurement. The comparison shows that the model is good at simulating most of theNzO emission pulses and trends. Although the simulated N2O emission fluxes are generally lessthan the measured ones, the model outputs during the dryland period, especially during the wheatreviving and maturing stages in spring, are much better than those during the paddy field period.Some sensitive experiments were made by simulating the N2O emissions in spring, when there is asmallest gap between the simulated fluxes and the measured ones. Meanwhile, the effects of someimportant regulating factors, such as the rainfall N deposition by rainfall, temperature, tillage, nitrogen fertilizer and manure application on N2O emission during this period were analyzed. Fromthe analysis, we draw a conclusion that soil moisture and fertilization are the most important regulating factors while the N2O emission is sensitive to some other factors, such as temperature, manure, tillage and the wet deposition of atmospheric nitrate.展开更多
[Objective] The aim was to investigate the differences in nitrification and denitrification activities and the N20 emission of orchard soils cultivated for different periods of time. [Method] Incubation experiment was...[Objective] The aim was to investigate the differences in nitrification and denitrification activities and the N20 emission of orchard soils cultivated for different periods of time. [Method] Incubation experiment was conducted to determine the ni- trification and denitrification activities and N20 emission of three types of orchard soil samples that had been cultivated for 5, 12 and 20 years, respectively, by using the virgin soil sample as control. [Result] After 26 d of incubation, the nitrification rates of nitrogen fertilizer in the virgin soil sample and the orchard soil samples cultivated for 5, 12 and 20 years were 6.85%, 10.26%, 13.29% and 12.90%, respectively, which were positively correlated with content of soil organic matter, ammonium nitro- gen and total nitrogen (P〈0.05), and negatively correlated with soil carbon-nitrogen ratio and pH value (P〈0.05). The denitrification activities of these soil samples in- creased with the increase of cultivation years. The amount of nitrogen loss by deni- trification accounted for 0.01%-3.11% of the amount of fertilizer nitrogen, and had a positive correlation with the content of soil organic matter (P〈0.05). The N20 emis- sions of orchard soil samples were higher than that of the virgin soil samples (P〈 0.05). [Conclusion] In South China, the nitrification activity of orchard soil is relatively low, but it has a tendency to increase as the cultivation years increases; the denitri- fication activity is relatively high, and increases significantly with the increase of culti- vation years.展开更多
The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed ...The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed bag-gas chromatography. A total of five species seedlings were involved in this study, i.e.,Pinus koraiensis Sieb. et Zucc,Fraxinus mandshurica Rupr,Juglans mandshurica Maxim,Tilia amurensis Rupr, andQuercus mongolica Fisch. ex Turcz.. The results showed that the stomatal conductance, net photosynthetic rate and N2O emission of leaves were significantly reduced under the water stress. The stoma in the leaves of trees is the main pathway of N2O emission. N2O emission in the trees mainly occurred during daytime. N2O emission rates were different in various tree specie seedlings at the same water status. In the same tree species, N2O emission rates decreased as the reduction of soil water contents. At different soil water contents (MW, LW) the N2O emission rates ofPinus koraiensis decreased by 34.43% and 100.6% of those in normal water condition, respectively. In broadleaf arbor decreased by 31.93% and 86.35%, respectively. Under different water stresses N2O emission rates in five tree species such asPinus koraiensis, Fraxinus mandshurica, Juglans mandshurica, Tilia amurensis, andQuercus mongolica were 38.22, 14.44, 33.02, 16.48 and 32.33 ngN2O·g?1DW·h?1, respectively. Keywords Trees - N2O emission rate - Soil water stress - broadleaf/Korean pine forest - Changbai Mountain CLC number S718.55 Document code A Foundation item: This project was supported by the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10), and the Special Funds for Major State Basic Research Program of China (No. G1999043407)Biography: Wang Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
A biogeochemical model(DNDC) is combined with a plant ecological model to estimate N_2O emission from rice paddy fields in the Yangtze River Delta region. The model is driven by local meteorological, soil, and physiol...A biogeochemical model(DNDC) is combined with a plant ecological model to estimate N_2O emission from rice paddy fields in the Yangtze River Delta region. The model is driven by local meteorological, soil, and physiological data and is validated for 1999 and 2000 at a site in the region, which showed that the simulated N_2O emissions agree fairly well with the observed data. This adds some confidence in the estimated N_2O emissions during 1950 and 2000 in the Hangzhou Region. A significant correlation between the N_2O emissions and the population for the Hangzhou Region is found, which is due to a combination of increased application of fertilizers and cultivated area. Such a correlation can not be established for the whole Yangtze River Delta region when the data of both urban and rural areas are included. However, when the data from the heavily urbanized areas are excluded, a significant correlation between population and N_2O emissions emerges. The results show clearly that both the temporal and the spatial N_2O emissions have significant positive relationship with population under traditional farming practice. These results have implications for suitable mitigation options towards a sustainable agriculture and environment in this region.展开更多
A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design w...A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.展开更多
An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter ...An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter wheat and summer maize growing seasons. The results showed that the continuous application of fertilizer in agricultural soils increased N\-2O emissions by a factor of 24.1—28.1, the calculated annual chemical N fertilizer\|transformed N\-2O\|N emissions was 0.67%. Our results indicated that the application of organic manure also had a significant influence on soil N 2O emissions, which combined with the use of chemical N increased about 20% in a year. It was calculated that there were about 0.11% N of organic manure transformed as N 2O N. Annual mean N 2O emission from our study area of fertilized soils was estimated to be 57.1 μgN 2O/(m 2·h). A weak correlation was also found between N 2O emissions and soil available nitrogen content NH + 4.展开更多
To feed an increasing population, large amounts of chemical nitrogen fertilizer have been used to produce much of our food, feed and fiber thereby increasing nitrogen levels in soils, natural waters, crop residues, li...To feed an increasing population, large amounts of chemical nitrogen fertilizer have been used to produce much of our food, feed and fiber thereby increasing nitrogen levels in soils, natural waters, crop residues, livestock wastes,and municipal and agricultural wastes, with national and international concern about its potential adverse effects on environmental quality and public health. To understand these phenomena and problems, first the nitrogen cycle and the environment are described. Then recent trends for nitrogen cycling through the food and feed system, N2O emissions from fertilized upland and paddy soils, and NO-3 pollution in ground water in Japan are reported. Finally, mitigation strategies in Japan for reducing N2O emission and NO-3 pollution are proposed, including nitrification inhibitors, controlled release fertilizers, utilization of plant species that could suppress nitrification, utilizing the toposequence, government policy, and appropriate agricultural practices. Of all the technologies presented, use of nitrification inhibitors and controlled release fertilizers are deemed the most important with further development of these aspects of technologies being expected. These practices, if employed worldwide, could help reduce the load, or environmental deterioration, on the Earth's biosphere.展开更多
In order to study effects of application of contmllE=d release fertilizer on ni- trous oxide (N2O) emission in slope cultivated land with purple soil, four treatments including the control group (CK), urea (UR),...In order to study effects of application of contmllE=d release fertilizer on ni- trous oxide (N2O) emission in slope cultivated land with purple soil, four treatments including the control group (CK), urea (UR), controlled release nitrogen fertilizer (CR), and controlled release nitrogen fertilizer+urea (25%CR, 75%UR) were set up, and their impacts on maize yield, surface runoff and nitrogen loss in the growth pe- riod of maize and N2O emission were studied. The results show that maize yield, surface runoff, nitrogen loss from subsurface flow, and N2O emission in the control group was far lower than that in the fertilization treatments, revealing that fertilization was the main reason for nitrogen loss and N2O emission. Among the four treat- ments, nitrogen loss from subsurface flow in the treatment CR was the highest, up to 31.7 kg/hm^2, but N2O emission was 0.35 kg/hm^2, which was 37% less than that in the treatment UR. Nitrogen loss from subsurface flow in the treatment 25% CR was the lowest, only 20.9 kg/hm^2, and N2O emission was 15% less than that in the treatment UR. Nitrogen was slowly released from controlled release nitrogen fertilizer in the growth period, and controlled release nitrogen fertilizer could reduce N2O emis- .sion from slope cultivated land due to low content of soil inorganic nitrogen, but it could increase the nitrogen loss from subsurface flow. Therefore, the combination of controlled release fertilizer and urea can not only reduce N2O emission but also de- crease nitrogen loss from subsurface flow.展开更多
A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that a...A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectivelyl from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission.展开更多
Nitrogen losses are not only important for agriculture but environment as well. Field experiments were set up in summer corn field at Fengqiu Agro-Ecological Experimental Station of CAS in North China Plain. The soil ...Nitrogen losses are not only important for agriculture but environment as well. Field experiments were set up in summer corn field at Fengqiu Agro-Ecological Experimental Station of CAS in North China Plain. The soil was in maize-chao soil. Nitrification-denitrification losses and N2O emission were determined by acetylene-inhibition soil-core incubation method in the soils applied urea. The results showed that urea was fast hydrolyzed and became to nitrate. The soil with non urea released 0.33kg N/ha N2O. However, the soil produced 2.91kg N/ha N2O, about 1.94% of the applied N, when the urea was spread on soil surface. N2O emission reduced to 2.50kg N/ha, about 1.67% of the applied N, when the urea was put in deep soil by digging a hole. The denitrification loss was 1.17kg N/ha in control soil. It increased to 3.00kg N/ ha and 2.09kg N/ha, which were 2.00% and 1.39% of the used N, in the soils received urea on surface and sub-surface respectively. It was suggested that nitrification-denitrification was probably not a main way of fertilizer nitrogen loss in this region.展开更多
Laboratory and in situ experiments were done to investigate the influences of cultivation on temperate semi arid grassland (for 17 years spring wheat planted once every two years without fertilization) on soil N ...Laboratory and in situ experiments were done to investigate the influences of cultivation on temperate semi arid grassland (for 17 years spring wheat planted once every two years without fertilization) on soil N 2O emission and quantitative variations of related soil microbes. In the laboratory (25℃ and soil moisture 18%), cultivation increased soil transformations of fertilizer nitrogen (100 μg N/g as NaNO 3, urea, or as urea with dicyandiamide 1 μg N/g). The N 2O emissions from the cultivated and uncultivated soils with or without nitrogen additions were relatively low, and mainly originated from the nitrification. The soil N 2O emission due to cultivation decreased somewhat upon no fertilization or NaNO 3 addition, but significantly upon urea addition. The role of dicyandiamide as nitrification inhibitor was only considerable in the cultivated soil, and had small influence on decreasing N 2O emission in the two soils. The influence of cultivation on soil N 2O emission was also reflected by the number variations of microbes related with soil nitrogen transformation in the two soils. Compared to the uncultivated grassland, in situ ammonifiers and denitrifiers in the cultivated grassland quantitatively averagely increased, and aerobic no symbiotic azotobacters were quantitatively similar, leading to the continued decrease of organic matter content and the decrease of N 2O emission from the cultivated grassland soil.展开更多
The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water ...The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water regime. Higher soil moisture contents increased the total N 2O emissions in all treatments with total emissions being 7 times larger for the CK and >20 times larger for the fertilizer treatments at 85% WFPS(soil water filled pore space) than at 40% WFPS. The rates of N 2O emissions at 40% WFPS under all treatments were small. The maximum emission rate at 55% WFPS without the nitrification inhibitor(-inh) occurred later (day 11) than those of 70% WFPS (-inh) samples (day 8). The inhibition period was 4—22 d for 55% WFPS and 1—15 d for 70% WFPS comparing the rates of N 2O emissions treated (+inh) with (-inh). The maximum emission rates at 85% WFPS were higher than those at the other levels of soil water content for all treatments. The samples(+inh) released less N 2O than (-inh) samples at the early stage. Nevertheless, N 2O emissions from (+inh) samples lasted longer than in the (-inh) treatment. Changes in mineral N at 55%, 70% and 85% WFPS followed the same pattern. NH + 4-N concentrations decreased while NO - 3-N concentrations increased from the beginning of incubation. NH + 4-N concentrations from 40% WFPS treatment declined more slowly than those of the other three levels of soil water content. Nitrification was faster in the (-inh) samples with 100% NH + 4-N nitrified after 22 d(50% WFPS) and 15 d(70% and 85% WFPS). N 2O emissions increased with soil water content. Adding N-fertilizer increased emissions of N 2O. The application of the nitrification inhibitor significantly reduced total N 2O emissions from 30.5%(at 85%WFPS) to 43.6%(at 55% WFPS).展开更多
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst...Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.展开更多
Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in rec...Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems.展开更多
The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Nort...The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.展开更多
Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the eff...Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the effects of DBRT on the mechanically transplanted rice yield and greenhouse gas emissions remain unclear.To evaluate the effects of DBRT on improving the food security of mechanically transplanted rice and reducing the greenhouse gas emissions,we conducted an experiment for two years with wheat straw incorporation.Three tillage methods were set up:DBRT,uniaxial rotary tillage in dryland and paddy(DPURT),and uniaxial rotary tillage in paddy(PURT).The results showed that compared with DPURT and PURT,DBRT increased the yield of machine-transplanted rice by 7.5-11.0%and 13.3-26.7%,respectively,while the seasonal cumulative CH_(4) emissions were reduced by 13.9-21.2%and 30.2-37.0%,respectively,and the seasonal cumulative N_(2)O emissions were increased by 13.5-28.6%and 50.0-73.1%,respectively.Consequently,DBRT reduced the global warming potential by 10.7-15.5%and 23.7-28.6%,respectively,andtheyield-scaledglobalwarmingpotentialby18.2-21.8%and36.4-39.3%,respectively,compared to DPURT and PURT.These results were mainly related to the fact that DBRT significantly reduced soil bulk density and increased soil redox potential(Eh).Therefore,implementing DBRT in machine-transplanted rice fields is feasible,which cannot only increase the rice yield,but also reduce the greenhouse gas emissions.展开更多
基金Supported by National Key Technology Research and Development Program(2013BAD11B03)National Natural Science Foundation(31272249,31071865,41505100)~~
文摘This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.
文摘Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.
文摘DNDC, a rainfall-driven and process-oriented model of soil carbon and nitrogenbiogeochemistry, is applied t0 simulate the nitrous oxide emissions from agricultural ecosystem inSoutheast China. We simulated the soil N2O emission during a whole rice-wheat rotation cycle(from Nov. 1, 1996 to Oct. 31, 1997) under three different conditions, which are A) no fertilizer, B)both chemical fertilizer and manure and, C) chemical fertiliser only. The processes ofN2O emission were discussed in detail by comparing the model outputs with the results from fieldmeasurement. The comparison shows that the model is good at simulating most of theNzO emission pulses and trends. Although the simulated N2O emission fluxes are generally lessthan the measured ones, the model outputs during the dryland period, especially during the wheatreviving and maturing stages in spring, are much better than those during the paddy field period.Some sensitive experiments were made by simulating the N2O emissions in spring, when there is asmallest gap between the simulated fluxes and the measured ones. Meanwhile, the effects of someimportant regulating factors, such as the rainfall N deposition by rainfall, temperature, tillage, nitrogen fertilizer and manure application on N2O emission during this period were analyzed. Fromthe analysis, we draw a conclusion that soil moisture and fertilization are the most important regulating factors while the N2O emission is sensitive to some other factors, such as temperature, manure, tillage and the wet deposition of atmospheric nitrate.
基金Supported by the Natural Science Foundation of Fujian(2008J0120)the Projects for the Nonprofit Specialized Research Institutes in Fujian Province(2009R10032-1,2010R1024-2)Youth Innovation Fund of Fujian Academy of Agricultural Sciences(2010QB-7),Key Project of Fujian Academy of Agricultural Sciences~~
文摘[Objective] The aim was to investigate the differences in nitrification and denitrification activities and the N20 emission of orchard soils cultivated for different periods of time. [Method] Incubation experiment was conducted to determine the ni- trification and denitrification activities and N20 emission of three types of orchard soil samples that had been cultivated for 5, 12 and 20 years, respectively, by using the virgin soil sample as control. [Result] After 26 d of incubation, the nitrification rates of nitrogen fertilizer in the virgin soil sample and the orchard soil samples cultivated for 5, 12 and 20 years were 6.85%, 10.26%, 13.29% and 12.90%, respectively, which were positively correlated with content of soil organic matter, ammonium nitro- gen and total nitrogen (P〈0.05), and negatively correlated with soil carbon-nitrogen ratio and pH value (P〈0.05). The denitrification activities of these soil samples in- creased with the increase of cultivation years. The amount of nitrogen loss by deni- trification accounted for 0.01%-3.11% of the amount of fertilizer nitrogen, and had a positive correlation with the content of soil organic matter (P〈0.05). The N20 emis- sions of orchard soil samples were higher than that of the virgin soil samples (P〈 0.05). [Conclusion] In South China, the nitrification activity of orchard soil is relatively low, but it has a tendency to increase as the cultivation years increases; the denitri- fication activity is relatively high, and increases significantly with the increase of culti- vation years.
基金The National Natural Science Foundation of China (No. 30271068) the grant of the Knowledge Inno-vation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10) and the Special Funds for Major State Basic Research Pr
文摘The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed bag-gas chromatography. A total of five species seedlings were involved in this study, i.e.,Pinus koraiensis Sieb. et Zucc,Fraxinus mandshurica Rupr,Juglans mandshurica Maxim,Tilia amurensis Rupr, andQuercus mongolica Fisch. ex Turcz.. The results showed that the stomatal conductance, net photosynthetic rate and N2O emission of leaves were significantly reduced under the water stress. The stoma in the leaves of trees is the main pathway of N2O emission. N2O emission in the trees mainly occurred during daytime. N2O emission rates were different in various tree specie seedlings at the same water status. In the same tree species, N2O emission rates decreased as the reduction of soil water contents. At different soil water contents (MW, LW) the N2O emission rates ofPinus koraiensis decreased by 34.43% and 100.6% of those in normal water condition, respectively. In broadleaf arbor decreased by 31.93% and 86.35%, respectively. Under different water stresses N2O emission rates in five tree species such asPinus koraiensis, Fraxinus mandshurica, Juglans mandshurica, Tilia amurensis, andQuercus mongolica were 38.22, 14.44, 33.02, 16.48 and 32.33 ngN2O·g?1DW·h?1, respectively. Keywords Trees - N2O emission rate - Soil water stress - broadleaf/Korean pine forest - Changbai Mountain CLC number S718.55 Document code A Foundation item: This project was supported by the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10), and the Special Funds for Major State Basic Research Program of China (No. G1999043407)Biography: Wang Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan
文摘A biogeochemical model(DNDC) is combined with a plant ecological model to estimate N_2O emission from rice paddy fields in the Yangtze River Delta region. The model is driven by local meteorological, soil, and physiological data and is validated for 1999 and 2000 at a site in the region, which showed that the simulated N_2O emissions agree fairly well with the observed data. This adds some confidence in the estimated N_2O emissions during 1950 and 2000 in the Hangzhou Region. A significant correlation between the N_2O emissions and the population for the Hangzhou Region is found, which is due to a combination of increased application of fertilizers and cultivated area. Such a correlation can not be established for the whole Yangtze River Delta region when the data of both urban and rural areas are included. However, when the data from the heavily urbanized areas are excluded, a significant correlation between population and N_2O emissions emerges. The results show clearly that both the temporal and the spatial N_2O emissions have significant positive relationship with population under traditional farming practice. These results have implications for suitable mitigation options towards a sustainable agriculture and environment in this region.
基金Project supported by the National Natural Science Foundation of China (No. 40171048)the Science and Technique Key Project of the Tenth Five-Year Plan of China (No. 2002BA516A03)
文摘A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.
基金TheNationalNaturalScienceFoundationofChina (No .496 710 0 4) TheDirectorFoundationofInstituteofGeographicSciencesandNaturalRe
文摘An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter wheat and summer maize growing seasons. The results showed that the continuous application of fertilizer in agricultural soils increased N\-2O emissions by a factor of 24.1—28.1, the calculated annual chemical N fertilizer\|transformed N\-2O\|N emissions was 0.67%. Our results indicated that the application of organic manure also had a significant influence on soil N 2O emissions, which combined with the use of chemical N increased about 20% in a year. It was calculated that there were about 0.11% N of organic manure transformed as N 2O N. Annual mean N 2O emission from our study area of fertilized soils was estimated to be 57.1 μgN 2O/(m 2·h). A weak correlation was also found between N 2O emissions and soil available nitrogen content NH + 4.
基金Project supported by the Canadian International Development Agency, Canada and the Chinese Academy of Scicences, China (No. KZCX2-413)
文摘To feed an increasing population, large amounts of chemical nitrogen fertilizer have been used to produce much of our food, feed and fiber thereby increasing nitrogen levels in soils, natural waters, crop residues, livestock wastes,and municipal and agricultural wastes, with national and international concern about its potential adverse effects on environmental quality and public health. To understand these phenomena and problems, first the nitrogen cycle and the environment are described. Then recent trends for nitrogen cycling through the food and feed system, N2O emissions from fertilized upland and paddy soils, and NO-3 pollution in ground water in Japan are reported. Finally, mitigation strategies in Japan for reducing N2O emission and NO-3 pollution are proposed, including nitrification inhibitors, controlled release fertilizers, utilization of plant species that could suppress nitrification, utilizing the toposequence, government policy, and appropriate agricultural practices. Of all the technologies presented, use of nitrification inhibitors and controlled release fertilizers are deemed the most important with further development of these aspects of technologies being expected. These practices, if employed worldwide, could help reduce the load, or environmental deterioration, on the Earth's biosphere.
基金Supported by Financial Innovation Ability Promotion Project of Sichuan Province,China(2013XXXK-013,2016GYSH-023)National Key Technology R&D Program(2012BAD05B03-8)~~
文摘In order to study effects of application of contmllE=d release fertilizer on ni- trous oxide (N2O) emission in slope cultivated land with purple soil, four treatments including the control group (CK), urea (UR), controlled release nitrogen fertilizer (CR), and controlled release nitrogen fertilizer+urea (25%CR, 75%UR) were set up, and their impacts on maize yield, surface runoff and nitrogen loss in the growth pe- riod of maize and N2O emission were studied. The results show that maize yield, surface runoff, nitrogen loss from subsurface flow, and N2O emission in the control group was far lower than that in the fertilization treatments, revealing that fertilization was the main reason for nitrogen loss and N2O emission. Among the four treat- ments, nitrogen loss from subsurface flow in the treatment CR was the highest, up to 31.7 kg/hm^2, but N2O emission was 0.35 kg/hm^2, which was 37% less than that in the treatment UR. Nitrogen loss from subsurface flow in the treatment 25% CR was the lowest, only 20.9 kg/hm^2, and N2O emission was 15% less than that in the treatment UR. Nitrogen was slowly released from controlled release nitrogen fertilizer in the growth period, and controlled release nitrogen fertilizer could reduce N2O emis- .sion from slope cultivated land due to low content of soil inorganic nitrogen, but it could increase the nitrogen loss from subsurface flow. Therefore, the combination of controlled release fertilizer and urea can not only reduce N2O emission but also de- crease nitrogen loss from subsurface flow.
基金the National Natural Science Foundation of China (No. 39730110) and the Ministryof Foreign Affairs, Belgium (ABOS) through "VL
文摘A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectivelyl from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission.
基金the National Nature Science Foundation of China,Fund of Atmospheric Physics Institute, CAS,ACIAR LWR, Australia
文摘Nitrogen losses are not only important for agriculture but environment as well. Field experiments were set up in summer corn field at Fengqiu Agro-Ecological Experimental Station of CAS in North China Plain. The soil was in maize-chao soil. Nitrification-denitrification losses and N2O emission were determined by acetylene-inhibition soil-core incubation method in the soils applied urea. The results showed that urea was fast hydrolyzed and became to nitrate. The soil with non urea released 0.33kg N/ha N2O. However, the soil produced 2.91kg N/ha N2O, about 1.94% of the applied N, when the urea was spread on soil surface. N2O emission reduced to 2.50kg N/ha, about 1.67% of the applied N, when the urea was put in deep soil by digging a hole. The denitrification loss was 1.17kg N/ha in control soil. It increased to 3.00kg N/ ha and 2.09kg N/ha, which were 2.00% and 1.39% of the used N, in the soils received urea on surface and sub-surface respectively. It was suggested that nitrification-denitrification was probably not a main way of fertilizer nitrogen loss in this region.
文摘Laboratory and in situ experiments were done to investigate the influences of cultivation on temperate semi arid grassland (for 17 years spring wheat planted once every two years without fertilization) on soil N 2O emission and quantitative variations of related soil microbes. In the laboratory (25℃ and soil moisture 18%), cultivation increased soil transformations of fertilizer nitrogen (100 μg N/g as NaNO 3, urea, or as urea with dicyandiamide 1 μg N/g). The N 2O emissions from the cultivated and uncultivated soils with or without nitrogen additions were relatively low, and mainly originated from the nitrification. The soil N 2O emission due to cultivation decreased somewhat upon no fertilization or NaNO 3 addition, but significantly upon urea addition. The role of dicyandiamide as nitrification inhibitor was only considerable in the cultivated soil, and had small influence on decreasing N 2O emission in the two soils. The influence of cultivation on soil N 2O emission was also reflected by the number variations of microbes related with soil nitrogen transformation in the two soils. Compared to the uncultivated grassland, in situ ammonifiers and denitrifiers in the cultivated grassland quantitatively averagely increased, and aerobic no symbiotic azotobacters were quantitatively similar, leading to the continued decrease of organic matter content and the decrease of N 2O emission from the cultivated grassland soil.
文摘The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water regime. Higher soil moisture contents increased the total N 2O emissions in all treatments with total emissions being 7 times larger for the CK and >20 times larger for the fertilizer treatments at 85% WFPS(soil water filled pore space) than at 40% WFPS. The rates of N 2O emissions at 40% WFPS under all treatments were small. The maximum emission rate at 55% WFPS without the nitrification inhibitor(-inh) occurred later (day 11) than those of 70% WFPS (-inh) samples (day 8). The inhibition period was 4—22 d for 55% WFPS and 1—15 d for 70% WFPS comparing the rates of N 2O emissions treated (+inh) with (-inh). The maximum emission rates at 85% WFPS were higher than those at the other levels of soil water content for all treatments. The samples(+inh) released less N 2O than (-inh) samples at the early stage. Nevertheless, N 2O emissions from (+inh) samples lasted longer than in the (-inh) treatment. Changes in mineral N at 55%, 70% and 85% WFPS followed the same pattern. NH + 4-N concentrations decreased while NO - 3-N concentrations increased from the beginning of incubation. NH + 4-N concentrations from 40% WFPS treatment declined more slowly than those of the other three levels of soil water content. Nitrification was faster in the (-inh) samples with 100% NH + 4-N nitrified after 22 d(50% WFPS) and 15 d(70% and 85% WFPS). N 2O emissions increased with soil water content. Adding N-fertilizer increased emissions of N 2O. The application of the nitrification inhibitor significantly reduced total N 2O emissions from 30.5%(at 85%WFPS) to 43.6%(at 55% WFPS).
基金the National Key Research and Development Program of China(2017YFD0800102)the Hubei Provincial Key Research and Development Program,China(2021BCA156)。
文摘Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42161144002)the National Key Research and Development Programs of China (Grant No. 2022YFE0209200-03)+1 种基金the Suzhou Agricultural Science, Technology and Innovation Programs of Suzhou Agricultural Department (Grant No. SNG2022011)the special fund of State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex (SEPAir2022080590)
文摘Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems.
基金This work was supported by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(52179046).
文摘The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China.
基金jointly supported by the Key R&D Program of Jiangsu ProvinceChina(BE2022338)+3 种基金the Jiangsu Agriculture Science and Technology Innovation FundChina(CX(20)1012)the National Natural Science Foundation of China(31801293)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the effects of DBRT on the mechanically transplanted rice yield and greenhouse gas emissions remain unclear.To evaluate the effects of DBRT on improving the food security of mechanically transplanted rice and reducing the greenhouse gas emissions,we conducted an experiment for two years with wheat straw incorporation.Three tillage methods were set up:DBRT,uniaxial rotary tillage in dryland and paddy(DPURT),and uniaxial rotary tillage in paddy(PURT).The results showed that compared with DPURT and PURT,DBRT increased the yield of machine-transplanted rice by 7.5-11.0%and 13.3-26.7%,respectively,while the seasonal cumulative CH_(4) emissions were reduced by 13.9-21.2%and 30.2-37.0%,respectively,and the seasonal cumulative N_(2)O emissions were increased by 13.5-28.6%and 50.0-73.1%,respectively.Consequently,DBRT reduced the global warming potential by 10.7-15.5%and 23.7-28.6%,respectively,andtheyield-scaledglobalwarmingpotentialby18.2-21.8%and36.4-39.3%,respectively,compared to DPURT and PURT.These results were mainly related to the fact that DBRT significantly reduced soil bulk density and increased soil redox potential(Eh).Therefore,implementing DBRT in machine-transplanted rice fields is feasible,which cannot only increase the rice yield,but also reduce the greenhouse gas emissions.